Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

О СВОЙСТВАХ ФУНДАМЕНТАЛЬНОГО РЕШЕНИЯ ОДНОМЕРНОГО ВОЛНОВОГО ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНОГО ОПЕРАТОРА С ДРОБНО-ЭКСПОНЕНЦИАЛЬНОЙ ФУНКЦИЕЙ ПАМЯТИ

Код статьи
S3034504925040054-1
DOI
10.7868/S3034504925040054
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 524 / Номер выпуска
Страницы
34-39
Аннотация
Исследуются свойства фундаментального решения линейного вольтеррова интегро-дифференциального оператора, который представляет собой одномерный волновой линейный дифференциальный оператор с частными производными, возмущенный интегральным оператором вольтеровой свертки. Функция ядра интегрального оператора представляет собой сумму дробно-экспоненциальных функций (функций Работнова) с положительными коэффициентами. Для линейных вольтерровых интегро-дифференциальных операторов с частными производными второго порядка вводится понятие гиперболичности относительно конуса. Устанавливается, что гиперболичность относительно конуса эквивалентна локализации носителя фундаментального решения линейного вольтеррова интегро-дифференциального оператора второго порядка в сопряженном конусе. Устанавливается гиперболичность относительно конуса одномерного волнового интегро-дифференциального оператора с дробно-экспоненциальной функцией памяти.
Ключевые слова
линейные вольтеровы интегро-дифференциальные уравнения с частными производными преобразование Фурье–Лапласа гиперболичность дифференциальных и интегро-дифференциальных операторов дробно-экспоненциальная функция
Дата публикации
27.11.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
8

Библиография

  1. 1. Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
  2. 2. Gurtin M.E., Pipkin A.C. General theory of heat conduction with finite wave speed // Arch. Rat. Mech. Anal. 1968. V. 31. P. 113–126.
  3. 3. Владимиров В.С. Обобщенные функции в математической физике. М.: Наука, 1979. 320 с.
  4. 4. Владимиров В.С. Уравнения математической физики. М.: Наука, 1988. 512 с.
  5. 5. Дрожжинов Ю.Н., Завьялов Б.И. Лекционные курсы НОЦ /Математический институт им. В.А. Стеклова. Вып. 5 Введение в теорию обобщенных функций. М.: МИАН, 2006. 164 с.
  6. 6. Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with memory. Theory and applications. Springer New-York–Dordrecht–Heidelberg–London, 2012. 576 p.
  7. 7. Kopachevsky N.D., Krein S.G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Nonself-adjoint Problems for Viscous Fluids // Operator Theory: Advances and Applications (Birkhauser Verlag, Basel/Switzerland). 2003. V. 146. 444 p.
  8. 8. Власов В.В. Раутиан Н.А. Спектральный анализ функционально-дифференциальных уравнений. М.: МАКС Пресс, 2016. 488 с.
  9. 9. Георгиевский Д.В. Модели теории вязкоупругости. М.: ЛЕНАНД, 2023. 144 с.
  10. 10. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. M.: Мир, 1984.
  11. 11. Skubachevskii A.L. Boundary-value problems for elliptic functional-differential equations and their applications // Russian Mathematical Surveys. 2016. V. 71. № 5. P. 801–906.
  12. 12. Rautian N.A. On the Properties of Semigroups Generated by Volterra Integro-Differential Equations with Kernels Representable by Stieltjes Integrals // Differential Equations. 2021. V. 57. № 9. P. 1231–1248.
  13. 13. Vlasov V.V., Rautian N.A. Well-Posed Solvability of Volterra Integro-Differential Equations in Hilbert Spaces // Differential Equations. 2022. V. 58. № 10. P. 1410–1426.
  14. 14. Rautian N.A., Vlasov V.V. Spectral Analysis of the Generators for Semigroups Associated with Volterra Integro-Differential Equations // Lobachevskii Journal of Mathematics. 2023. V. 44. № 3. P. 926–935.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека