RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ON THE PROPERTIES OF THE FUNDAMENTAL SOLUTION OF A ONE-DIMENSIONAL WAVE INTEGRO-DIFFERENTIAL OPERATOR WITH A FRACTIONAL-EXPONENTIAL MEMORY FUNCTION

PII
S3034504925040054-1
DOI
10.7868/S3034504925040054
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 524 / Issue number
Pages
34-39
Abstract
The properties of the fundamental solution of the linear Volterra integro-differential operator, which is a one-dimensional wave linear differential operator with partial derivatives, perturbed the Volterra integral operator of convolution, are investigated. The kernel function of the integral operator is the sum of fractional exponential functions (Rabotnov functions) with positive coefficients. For linear Volterra integro-differential operators with second-order partial derivatives, the concept of hyperbolicity with respect to a cone is introduced. It is established that hyperbolicity with respect to a cone is equivalent to the localization of the support of the fundamental solution of a second-order linear Volterra integro-differential operator in the conjugate cone. Hyperbolicity relative to the cone is established for one-dimensionalwave integrodifferential operator with a fractional-exponential memory function.
Keywords
линейные вольтеровы интегро-дифференциальные уравнения с частными производными преобразование Фурье–Лапласа гиперболичность дифференциальных и интегро-дифференциальных операторов дробно-экспоненциальная функция
Date of publication
27.11.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
  2. 2. Gurtin M.E., Pipkin A.C. General theory of heat conduction with finite wave speed // Arch. Rat. Mech. Anal. 1968. V. 31. P. 113–126.
  3. 3. Владимиров В.С. Обобщенные функции в математической физике. М.: Наука, 1979. 320 с.
  4. 4. Владимиров В.С. Уравнения математической физики. М.: Наука, 1988. 512 с.
  5. 5. Дрожжинов Ю.Н., Завьялов Б.И. Лекционные курсы НОЦ /Математический институт им. В.А. Стеклова. Вып. 5 Введение в теорию обобщенных функций. М.: МИАН, 2006. 164 с.
  6. 6. Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with memory. Theory and applications. Springer New-York–Dordrecht–Heidelberg–London, 2012. 576 p.
  7. 7. Kopachevsky N.D., Krein S.G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Nonself-adjoint Problems for Viscous Fluids // Operator Theory: Advances and Applications (Birkhauser Verlag, Basel/Switzerland). 2003. V. 146. 444 p.
  8. 8. Власов В.В. Раутиан Н.А. Спектральный анализ функционально-дифференциальных уравнений. М.: МАКС Пресс, 2016. 488 с.
  9. 9. Георгиевский Д.В. Модели теории вязкоупругости. М.: ЛЕНАНД, 2023. 144 с.
  10. 10. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. M.: Мир, 1984.
  11. 11. Skubachevskii A.L. Boundary-value problems for elliptic functional-differential equations and their applications // Russian Mathematical Surveys. 2016. V. 71. № 5. P. 801–906.
  12. 12. Rautian N.A. On the Properties of Semigroups Generated by Volterra Integro-Differential Equations with Kernels Representable by Stieltjes Integrals // Differential Equations. 2021. V. 57. № 9. P. 1231–1248.
  13. 13. Vlasov V.V., Rautian N.A. Well-Posed Solvability of Volterra Integro-Differential Equations in Hilbert Spaces // Differential Equations. 2022. V. 58. № 10. P. 1410–1426.
  14. 14. Rautian N.A., Vlasov V.V. Spectral Analysis of the Generators for Semigroups Associated with Volterra Integro-Differential Equations // Lobachevskii Journal of Mathematics. 2023. V. 44. № 3. P. 926–935.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library