Let A ≥ mA > 0 be a closed positive definite symmetric operator in a Hilbert space ℌ, let \({{\hat {A}}_{F}}\) and \({{\hat {A}}_{K}}\) be its Friedrichs and Krein extensions, and let ∞ be the ideal of compact operators in ℌ. The following problem has been posed by M.S. Birman: Is the implication A–1 ∈ G∞ ⇒ (\({{\hat {A}}_{F}}\) )–1 ∈ G∞(ℌ) holds true or not? It turns out that under condition A–1 ∈ G∞ the spectrum of Friedrichs extension \({{\hat {A}}_{F}}\) might be of arbitrary nature. This gives a complete negative solution to the Birman problem.Let \(\hat {A}_{K}^{'}\) be the reduced Krein extension. It is shown that certain spectral properties of the operators (\({{I}_{{{{\mathfrak{M}}_{0}}}}}\) + \(\hat {A}_{K}^{'}\))–1 and P1(I + A)–1 are close. For instance, these operators belong to a symmetrically normed ideal G, say are compact, only simultaneously. Moreover, it turns out that under a certain additional condition the eigenvalues of these operators have the same asymptotic.Besides we complete certain investigations by Birman and Grubb regarding the equivalence of semiboubdedness property of selfadjoint extensions of A and the corresponding boundary operators.
Согласно Березину–Фаддееву под оператором Шрёдингера с точечными взаимодействиями понимают любое самосопряжённое расширение сужения оператора Лапласа на подмножество соболевского пространства . В настоящей заметке изучаются расширения (реализации), инвариантные относительно группы симметрий множества вершин правильного m-угольника. Такие реализации HBпараметризуются специальными циркулянтными матрицами . Мы описываем все такие реализации с нетривиальными ядрами. Решена задача Гриневича–Новикова о простоте нулевого собственного значения реализации HBсо скалярной матрицей и четным m. Показано, что при нечётном m нетривиальные ядра всех реализаций HBсо скалярными двумерны. Кроме того, для произвольных реализаций доказана оценка и описаны все инвариантные реализации с максимальной размерностью . Одна из них – расширение Крейна – минимальное положительное расширение оператора .
В недавних совместных работах авторов этой заметки решена известная проблема, остававшаяся открытой в течение многих лет, и, тем самым было доказано, что для произвольных сжатий в гильбертовом пространстве с ядерной разностью существует интегрируемая функция спектрального сдвига, для которой справедлив аналог формулы следов Лифшица–Крейна. Аналогичные результаты были получены и для пар диссипативных операторов. При этом в отличие от случая самосопряжённых и унитарных операторов может случиться так, что не существует вещественнозначной интегрируемой функции спектрального сдвига. В этой заметке мы анонсируем результаты, которые дают достаточные условия для существования вещественнозначной интегрируемой функции спектрального сдвига для пар сжатий. Мы также рассматриваем случай пар диссипативных операторов.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation