RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

On the structure of Laplacian characteristic polynomial of circulant graphs

PII
10.31857/S2686954324010059-1
DOI
10.31857/S2686954324010059
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 515 / Issue number 1
Pages
34-39
Abstract
The present work deals with the characteristic polynomial of Laplacian matrix for circulant graphs. We show that it can be decomposed into a finite product of algebraic function evaluated at the roots of a linear combination of Chebyshev polynomials. As an important consequence of this result we get the periodicity of characteristic polynomials evaluated at the prescribed integer values. Moreover, we can show that the characteristic polynomials of circulant graphs are always perfect squares up to explicitly given linear factors.
Keywords
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
52

References

  1. 1. Медных А.Д., Медных И.А. Об асимптотике и арифметических свойствах функции сложности циркулянтных графов // ДАН. 2018. Т. 479. Вып. 4. С. 363–367.
  2. 2. Grunwald L.A., Mednykh I.A. The number of rooted forests in circulant graphs // Ars Math. Contemp. 2022. Vol. 22. No. 4. #P4.10. doi: 10.26493/1855-3974.2029.01d
  3. 3. Медных А.Д., Медных И.А. Индекс Кирхгофа для циркулянтных графов и его асимптотика // ДАН. 2020. Т. 494. Вып. 1. С. 43–47.
  4. 4. Liu Xg., Zhou Sm. Spectral characterizations of propeller graphs // Electron. J. Linear Algebra. 2014. Vol. 27. P. 19–38. doi: 10.13001/1081-3810.1603
  5. 5. Liu Xg., Lu P. Laplacian spectral characterization of dumbbell graphs and theta graphs // Discrete Math. Algorithms Appl. 2016. Vol. 8. No. 2. 1650028. DOI: 10.1142/S1793830916500282
  6. 6. Neumaerker N. The arithmetic structure of discrete dynamical systems on the torus // PhD Thesis. Bielefeld: Univ. Bielefeld, 2012.
  7. 7. Прасолов В.В. Многочлены. М.: МЦНМО, 2003. 335 с.
  8. 8. Chebotarev P., Shamis E. Matrix forest theorem // arXiv:math/0602575. 2006.
  9. 9. Knill O. Cauchy-Binet for pseudo-determinants // Linear Algebra Appl. 2014. Vol. 459. P. 522–547. doi:10.1016/j.laa.2014.07.013
  10. 10. Kelmans A.K., Chelnokov V.M. A certain polynomial of a graph and graphs with an extremal number of trees // J. Comb. Theory Ser. B. 1974. Vol. 16. P. 197–214. doi: 10.1016/ 0095-8956(74)90065-3
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library