RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Operator estimates for problems in domains with singular curving of boundary

PII
10.31857/S2686954324010025-1
DOI
10.31857/S2686954324010025
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 515 / Issue number 1
Pages
11-17
Abstract
We consider a system of second order semi-linear elliptic equations in a multidimensional domain, the boundary of which is arbitrarily curved and is contained in a narrow layer along the unperturbed boundary. On the curve boundary we impose the Dirichlet or Neumann condition. In the case of the Neumann condition, on the structure of curving we additionally impose rather natural and weak conditions. Under such conditions we show that the homogenized problem is for the same system of equations in the unperturbed problem with the boundary condition of the same kind. The main result are - and L-operator estimates.
Keywords
осциллирующая граница условие Дирихле условие Неймана операторная оценка
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
53

References

  1. 1. Sanchez-Palencia E.. Non-homogeneous media and vibration theory. New York: Springer, 1980. 409 pp.
  2. 2. Олейник О.А., Иосифьян Г.А., Шамаев А.С. Математические задачи теории сильно неоднородных упругих сред. М.: Изд-во МГУ, 1990. 312 с.
  3. 3. Беляев А.Г., Михеев А.Г., Шамаев А.С. // Ж. вычисл. матем. матем. физ. 1992. Т. 32. № 8. С. 1258–1272.
  4. 4. Чечкин Г.А., Акимова Е.А., Назаров С.А. // Доклады РАН. 2001. Т. 380. № 4. С. 439–442.
  5. 5. Грушин В.В., Доброхотов С.Ю. // Матем. заметки. 2014. Т. 95. № 3. С. 359–375.
  6. 6. Козлов В.А., Назаров С.А. // Алг. ан. 2010. Т. 22. № 6. С. 127–184.
  7. 7. Пастухова С.Е. // Дифф. уравн. 2001. Т. 37. № 9. С. 1216–1222.
  8. 8. Amirat Y., Bodart O., Chechkin G.A., Piatnitski A.L. // Stoch. Process. Appl. 2011. Т. 121. № 1. С. 1–23.
  9. 9. Arrieta J., Brushi S. // Discr. Cont. Dyn. Syst. Ser. B. 2010. Vol. 14. No. 2. P. 327–351.
  10. 10. Chechkin G.A., Friedman A., Piatnitski A.L. // J. Math. Anal. Appl. 1999. Vol. 231. No. 1. P. 213–234.
  11. 11. Jäger W., Mikelić A. // Comm. Math. Phys. 2003. Vol. 232. No. 3. P. 429–455.
  12. 12. Myong-Hwan Ri // Preprint: arXiv: 1311.0977. 2013.
  13. 13. Neuss N., Neuss-Radu M., Mikelić A. // Applic. Anal. 2006. Vol. 85. No. 5. P. 479–502.
  14. 14. Borisov D., Cardone G., Faella L., Perugia C. // J. Diff. Equat. 2013. Vol. 255. No. 12. P. 4378–4402.
  15. 15. Борисов Д.И. // Пробл. матем. ан. 2022. Вып. 116. С. 69–84.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library