- Код статьи
- 10.31857/S2686954323600192-1
- DOI
- 10.31857/S2686954323600192
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 512 / Номер выпуска 1
- Страницы
- 96-101
- Аннотация
- Изучается класс голоморфных отображений единичного круга в себя с двумя граничными неподвижными точками, одна из которых является точкой Данжуа–Вольфа. Найдена оценка сверху области однолистности на классе таких функций в зависимости от значения угловой производной в отталкивающей граничной неподвижной точке.
- Ключевые слова
- голоморфное отображение неподвижные точки теорема Данжуа–Вольфа угловая производная область однолистности
- Дата публикации
- 01.05.2023
- Год выхода
- 2023
- Всего подписок
- 0
- Всего просмотров
- 39
Библиография
- 1. Landau E. Der Picard–Schottkysche Satz und die Blochsche Konstante // Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. 1926. V. 32. P. 467–474.
- 2. Montel P. Leçons sur les fonctions univalentes ou multivalentes. Paris: Gauthier-Villars, 1933.
- 3. Горяйнов В.В. Голоморфные отображения единичного круга в себя с двумя неподвижными точками // Матем. сб. 2017. Т. 208. № 3. 54–71.
- 4. Голузин Г.М. Геометрическая теория функций комплексного переменного. M.: Наука, 1966.
- 5. Denjoy A. Sur l’iteration des fonctions analytiques // C. R. Acad. Sci. Paris Sér. A. 1926. V. 182. P. 255–257.
- 6. Wolff J. Sur l’itération des fonctions holomorphes dans une région, et dont les valeurs appartiennent à cette région // C. R. Acad. Sci. Paris Sér. A. 1926. V. 182. P. 42–43.
- 7. Wolff J. Sur l’itération des fonctions bornées // C. R. Acad. Sci. Paris Sér. A. 1926. V. 182. P. 200–201.
- 8. Валирон Ж. Аналитические функции. М.: ГИТТЛ, 1957.
- 9. Ahlfors L.V. Conformal invariants: Topics in geometric function theory. New York: McGraw-Hill Book Company, 1973.
- 10. Кудрявцева О.С., Солодов А.П. Двусторонние оценки областей однолистности классов голоморфных отображений круга в себя с двумя неподвижными точками // Матем. сб. 2019. Т. 210. № 7. 120–144.
- 11. Солодов А.П. Точная область однолистности на классе голоморфных отображений круга в себя с внутренней и граничной неподвижными точками // Изв. РАН. Сер. матем. 2021. Т. 85. № 5. 190–218.
- 12. Горяйнов В.В. Голоморфные отображения полосы в себя с ограниченным искажением на бесконечности // Тр. МИАН. 2017. Т. 298. 101–111.
- 13. Кудрявцева О.С., Солодов А.П. Асимптотически точная двусторонняя оценка областей однолистности голоморфных отображений круга в себя с инвариантным диаметром // Матем. сб. 2020. Т. 211. № 11. 96–117.