RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

STOCHASTIC MODELING THE TRANSPORT COEFFICIENTS OF LIQUIDS

PII
10.31857/S2686954322600495-1
DOI
10.31857/S2686954322600495
Publication type
Status
Published
Authors
Volume/ Edition
Volume 512 / Issue number 1
Pages
27-32
Abstract
A method of stochastic molecular modeling (SMM) of liquid transport coefficients has been developed. They are calculated using fluctuation-dissipation theorems, but unlike the molecular dynamics (MD) method, the phase trajectories of the system are simulated stochastically. The force acting on the molecule is determined stochastically using the created database of intermolecular forces. The effectiveness of the method is demonstrated by the example of calculating transport coefficients. It is shown that the SMM method requires much less computational resources than the MD method.
Keywords
жидкость коэффициенты переноса молекулярное моделирование стохастическое моделирование
Date of publication
01.05.2023
Year of publication
2023
Number of purchasers
0
Views
32

References

  1. 1. Chapman S., Cowling T.G. The Mathematical theory of non-uniform gases. Cambridge: Cambridge University Press, 1990. 457 p.
  2. 2. Зубарев Д.Н. Неравновесная статистическая термодинамика. М.: Наука, 1971. 415 с.
  3. 3. Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 2. Гидромеханика. Новосибирск: НГАСУ, 2005. 468 с.
  4. 4. Evans D.J., Morriss G.P. Statistical mechanics of nonequilibrium liquids. Elsevier, 2013. 316 p.
  5. 5. Reid R.C., Prausnitz J.M., Sherwood T.K. The properties of gases and liquids. New York: McGraw-Hill, 2004. 803 p.
  6. 6. Alder B.J., Wainwright T.E. // J. Chem. Phys. 1959. V. 31. № 2. P. 459–466.
  7. 7. Gibson J.B., Goland A.N., Milgram M., Vineyard G.N. // Phys. Rev. 1960. V. 120. P. 1229–1253.
  8. 8. Rapaport D.C. The Art of molecular dynamics simulation. Cambridge: Cambridge University Press, 1995. 549 p.
  9. 9. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford: Oxford University Press, 2017. 385 p.
  10. 10. Norman G.E., Stegailov V.V. // Comp. Physics Comm. 2002. V. 147. № 4. P. 678–683.
  11. 11. Норман Г.Э., Стегайлов В.В. // Мат. моделирование. 2012. Т. 24. № 6. С. 3–44.
  12. 12. Dorfman J.R. An introduction to chaos in nonequilibrium statistical mechanics. Cambridge: Cambridge University Press, 1999. 287 p.
  13. 13. Кузнецов С.П. Динамический хаос. М.: Физматлит. 2001. 295 с.
  14. 14. Rudyak V.Ya., Lezhnev E.V. // J. Phys.: Conf. Series. 2016. V. 738. P. 012086.
  15. 15. Рудяк В.Я., Лежнев Е.В. // Доклады АН ВШ РФ. 2016. № 4. С. 22–32.
  16. 16. Рудяк В.Я., Лежнев Е.В. // Матем. моделирование. 2017. Т. 29. № 3. С. 113–122.
  17. 17. Rudyak V.Ya., Lezhnev E.V. // J. Computational Phys. 2018. V. 355. P. 95–103.
  18. 18. Rudyak V.Ya., Lezhnev E.V. // J. Phys.: Conf. Series. 2018. V. 1105. P. 012122.
  19. 19. Рудяк В.Я., Лежнев Е.В., Любимов Д.Н. // Вестник ТГУ. Математика и Механика. 2019. № 3. С. 105–117.
  20. 20. Rudyak V.Ya., Lezhnev E.V. // Nanosystems: Phys., Chem., Math. 2020. V. 11. № 3. P. 285–293.
  21. 21. Рудяк В.Я., Лежнев Е.В., Любимов Д.Н. // Доклады АН ВШ РФ. 2021. № 1 (50). С. 19–29.
  22. 22. Hirschfelder J.O., Curtiss Ch.F., Bird R.B. Molecular theory of gases and liquids. New York, London John Wiley and Sons, Inc., Chapman and Hall, Lim., 1954.
  23. 23. Knapstad B., Skjalsvik A., Harald A. // J. Chem. Eng. Data. 1989. V. 34. P. 37–43.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library