Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ОБРАЗОВАНИЕ СТОХАСТИЧЕСКОГО ПОВЕДЕНИЯ И ВЗРЫВНЫХ РЕШЕНИЙ В БЕСКОНЕЧНО УДАЛЕННОМ ФАЗОВОМ ПРОСТРАНСТВЕ ДИНАМИЧЕСКИХ СИСТЕМ

Код статьи
S30345049S2686954325020098-1
DOI
10.7868/S3034504925020098
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 522 / Номер выпуска 1
Страницы
56-61
Аннотация
В статье рассматриваются условия, при которых происходит режим обострения фазовых переменных, стремящихся к кругу Пуанкаре за конечное время, и при этом исследуются системы дифференциальных уравнений, в которых наряду со взрывными решениями имеет место в некоторых случаях стохастическое поведение траектории. Рассматривается роль сепаратрис и сепаратрисных циклов до возмущения и при неавтономном малом периодическом возмущении правых частей исходных динамических систем, в фазовых пространстве которых возникают гомоклинические структуры, приводящие к стохастическому поведению траектории. Также рассматриваются различные случаи образования солитонов при бифуркациях траекторий систем.
Ключевые слова
преобразование Пуанкаре режимы обострений blow-up локализация (стабилизация) модели самоорганизации солитоны
Дата публикации
15.06.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Режимы с обострением: эволюция идеи. Под ред. Г.Г. Малинецкого. М.: ФИЗМАТЛИТ, 2006. 312 с.
  2. 2. Samarskii A.A., Galaktionov V.A., Kurdyumov S.P. and Mikhailov A.P., Blow-up in Quasilinear Parabolic Equations. Berlin: Gruyter, 1995. 542 c.
  3. 3. Радкевич Е.В., Яковлев Н.Н., Васильева О.А. Bопросы математического моделирования вибрационного горения // Доклады РАН. 2020. Т. 495. С. 69–73. https://doi.org/10.31857/S2686954320060144
  4. 4. Радкевич Е.В., Васильева О.А., Сидоров М.И., Ставровский М.Е. Тепловой взрыв как резонанс процесса горения // Доклады РАН. 2023. Т. 509. № 1. С. 60–64. DOI:10.31857/52686954323700108
  5. 5. Soleev A., Rozet I., Mukhtarov Y. Stochastic Regimes in Some Autowave and Oscillator Systems with Periodic Perturbations // AIP Conf. Proc. 3147, 020011. 2024. P. 94–98. doi.org/10.1063/5.0210942
  6. 6. Soleyev A.S., Rozet I.G., Muxtarov Y. Research of ecological and medical models using bifurcation parameters methods in finite difference discrete systems // Problems of Computational and Applied Mathematics. 2024. 4/1(59). P. 9–14.
  7. 7. Soleev A. Complicated Bifurcations of Periodic Solutions in some System of ODE // Canadian Mathem. Bulletin. 1996. V. 39 (3). P. 360–366.
  8. 8. Брюно А.Д., Солеев А. Бифуркации решений в обратимой системе ОДУ // Доклады РАН. 1995. Т. 52. № 3. С. 419–421.
  9. 9. Еругин Н.П. Книга для чтения по общему курсу дифференциальных уравнений. Минск: Наука и техника, 1979. 744 c.
  10. 10. Солеев А.С., Розет И.Г., Мухтаров Я. Режимы стохастики в некоторых моделях теплопроводности и самоорганизации при периодических возмущениях // Научный вестник Сам ГУ. Серия точных и естественных наук. 2024. № 1 (143/1). С. 4–11.
  11. 11. Кузенков О.А., Рябова Е.А., Круподерова К.Р. Математические модели процессов отбора. Нижний Новгород: ННГУ им. Н.И. Лобачевского, 2012. 133 c.
  12. 12. Марчук Г.И. Избранные труды. Том 4. Математическое моделирование в иммунологии и медицине. Москва: РАН, «Институт Вычислительной Математики», 2018. 239 с.
  13. 13. Куклес И.С. О методе Фроммера исследования особой точки // ДАН СССР. 1957. Т. 117. № 3. C. 367–370.
  14. 14. Артыков А.Р., Розет И.Г., Рабинков Г.А. Подвижные особенности решений, траектории которых в окрестности бесконечности являются спиралями // Дифференциальные уравнения. 1980. Т. 16. № 8. С. 1355–1360.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека