Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ОБ УСТОЙЧИВОСТИ ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ С НЕОГРАНИЧЕННЫМ ЗАПАЗДЫВАНИЕМ

Код статьи
S3034504925040085-1
DOI
10.7868/S3034504925040085
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 524 / Номер выпуска
Страницы
51-55
Аннотация
В данной работе установлена теорема об устойчивости начальной задачи для гиперболических уравнений с неограниченным запаздыванием в гильбертовом пространстве. Также представлена разностная схема второго порядка точности для аппроксимации решения этой задачи, и доказана соответствующая теорема об устойчивости для предложенной разностной схемы.
Ключевые слова
задачи с линейным запаздыванием гиперболические уравнения разностные схемы анализ устойчивости гильбертовы пространства
Дата публикации
27.11.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Bellman R., Cooke K. Differential-Difference Equations. New York: Academic Press, 1963.
  2. 2. Cahlon B., Schmidt D. Stability criteria for certain second-order delay differential equations with mixed coefficients // J. Comput. Appl. Math. 2004. V. 170. P. 79–102.
  3. 3. Driver R.D. Ordinary and Delay Differential Equations // Appl. Math. Sci. 1977. V. 20.
  4. 4. El’sgol’ts L.E., Norkin S.B. Introduction to the Theory and Application of Differential Equations with Deviating Arguments. New York: Academic Press, 1973.
  5. 5. Hale J.K., Verduyn Lunel S.M. Introduction to Functional Differential Equations. Berlin: Springer, 1993.
  6. 6. Скубачевский А.Л. К задаче установления равновесия для системы управления с запаздыванием // ДАН. 1994. Т. 335. № 2. С. 157–160.
  7. 7. Власов В.В., Раутиан Н.А. Спектральный анализ функционально-дифференциальных моделей. Москва: МАКС Пресс, 2016. 488 с.
  8. 8. Kolmanovski V., Myshkis A. Applied Theory of Functional Differential Equations. Dordrecht: Kluwer Academic, 1992.
  9. 9. YenicTerio˘glu A.F. The behavior of solutions of second order delay differential equations // Journal of Mathematical Analysis and Applications. 2007. V. 332. № 2. P. 1278–1290.
  10. 10. Ashyralyev A., Sobolevskii P.E. New Difference Schemes for Partial Differential Equations. Basel–Boston–Berlin: Birkhauser Verlag, 2004.
  11. 11. Fattorini H.O. Second Order Linear Differential Equations in Banach Spaces. North-Holland: Elsevier Science Publishing Company, 1985.
  12. 12. Krein S.G. Linear Differential Equations in Banach Space. Providence, R.I.: American Mathematical Society, 1971.
  13. 13. Ashyraliyev M., Ashyralyeva M. Stable difference schemes for hyperbolic-parabolic equations with unknown parameter // Boletn de la Sociedad Matematica Mexicana. 2024. V. 30. № 14. P. 1–19.
  14. 14. Vasilev V.V., Krein S.G., Piskarev S. Operator Semigroups, Cosine Operator Functions, and Linear Differential Equations // Mathematical Analysis. V. 28. (Russian) Itogi Nauki i Tekhniki. 1990. V. 204. P. 87–202. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. Moscow, 1990. Translated in J. Soviet Math. 1991. V. 54. № 4. P. 1042–1129.
  15. 15. Mohanty R.K. An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients // Applied Mathematics and Computation. 2005. V. 165. № 1. P. 229–236.
  16. 16. Пискарев С. И. Об устойчивости разностных схем в задачах Коши с почти периодическими решениями // Дифференц. уравнения. 1984. Т. 20. № 4. C. 689–695.
  17. 17. Соболевский П. Е., Чеботарева Л. М. Приближенное решение методом прямых задачи Коши для абстрактного гиперболического уравнения // Изв. вузов. Математика. 1977. Т. 5. C. 103–116.
  18. 18. Ashyralyev A., Sobolevskii P. E. A note on the difference schemes for hyperbolic equations // Abstract and Applied Analysis. 2001. V. 6. № 2. P. 63–70.
  19. 19. Ashyralyev A., Pastor J., Piskarev S., Yurtsever H. A. Second order equations in functional spaces: qualitative and discrete well-posedness // Abstract and Applied Analysis. 2015. ID 948321. P. 1–63.
  20. 20. Poorkarimi H., Wiener J. Bounded solutions of non-linear hyperbolic equations with delay // Proceedings of the VII International Conference on Non-Linear Analysis, V. Lakshmikantham, Ed. 1986. V. 1. P. 471–478.
  21. 21. Poorkarimi H., Wiener J. Shah S. M. On the exponential growth of solutions to non-linear hyperbolic equations // Internat. Journ. Math. Sci. 1989. V. 12. P. 539–546.
  22. 22. Wiener J. Generalized Solutions of Functional Differential Equations. Singapore: World Scientific, 1993.
  23. 23. Ashyralyev A., Agirseven D. Bounded solutions of nonlinear hyperbolic equations with time delay // Electronic Journal of Differential Equations. 2018. № 21. P. 1–15.
  24. 24. Vlasov V. V. Research of operator models arising in hereditary mechanics and thermophysics // Inter. Conf. Mathematical Physics, Dynamical Systems and Infinite-Dimensional Analysis. MIPT, RF, 2019.
  25. 25. Ashyralyev A., Vlasov V. V., Ashyralyev C. On the stability of hyperbolic difference equations with unbounded delay term // Boletn de la Sociedad Matematica Mexicana. 2023. V. 29. № 2. P. 27–38.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека