RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

NEW CASES OF INTEGRABLE CONSERVATIVE AND DISSIPATIVE SYSTEMS OF ANY ODD ORDER

PII
S3034504925010129-1
DOI
10.7868/S3034504925010129
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
96-106
Abstract
New cases of integrable dynamical systems of any odd order homogeneous in terms of variables are presented, in which a system on a tangent bundle to a even-dimensional manifold can be distinguished. In this case, the force field (shift generator in the system) is divided into an internal (conservative) and an external one, which has a dissipation of a different sign. The external field is introduced using some unimodular transformation and generalizes the previously considered fields. Complete sets of both first integrals and invariant differential forms are given.
Keywords
инвариант динамической системы существенно особые точки инварианта система с диссипацией интегрируемость
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
57

References

  1. 1. Poincare H. Calcul des probabilites. Paris: Gauthier-Villars, 1912.
  2. 2. Колмогоров А.Н. О динамических системах с интегральным инвариантом на торе // Доклады АН СССР. 1953. Т. 93.№ 5. 763-766.
  3. 3. Козлов В.В. Тензорные инварианты и интегрирование дифференциальных уравнений // Успехи матем. наук. 2019. Т. 74. № 1(445). 117-148.
  4. 4. Шамолин М.В. Об интегрируемости в трансцендентных функциях // Успехи матем. наук. 1998. Т. 53. № 3. 209-210.
  5. 5. Шамолин М.В. Полный список первых интегралов уравнений движения многомерного твердого тела в неконсервативном поле при наличии линейного демпфирования // Доклады РАН. 2015. Т. 464. № 6. 688-692.
  6. 6. Шамолин М.В. Инварианты однородных динамических систем седьмого порядка с диссипацией // Доклады РАН. Математика, информатика, процессы управления. 2024. Т. 516. № 1. 65-74.
  7. 7. Шамолин М.В. Полный список первых интегралов динамических уравнений движения многомерного твердого тела в неконсервативном поле // Доклады РАН. 2015. Т. 461. № 5. 533-536.
  8. 8. Шамолин М.В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле при учете линейного демпфирования // Доклады РАН. 2014. Т. 457. № 5. 542-545.
  9. 9. Шамолин М.В. Инварианты систем с малым числом степеней свободы, обладающих диссипацией // Вестник МГУ. Сер. 1. Математика, механика. 2024. № 2. 3-15.
  10. 10. Клейн Ф. Неевклидова геометрия. Пер. с нем. Изд. 4, испр., обновл. М.: URSS, 2017.
  11. 11. Вейль Г. Симметрия. М.: URSS, 2007.
  12. 12. Козлов В.В. Интегрируемость и неинтегриру-емость в гамильтоновой механике // Успехи матем. наук. 1983. Т. 38. № 1. 3-67.
  13. 13. Трофимов В.В., Шамолин М.В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем // Фундам. и прикл. матем. 2010. Т. 16. № 4. 3-229.
  14. 14. Шамолин М.В. Новые случаи полной интегрируемости в динамике динамически симметричного четырехмерного твердого тела в неконсервативном поле // Доклады РАН. 2009. Т. 425. № 3. 338-342.
  15. 15. Шамолин М.В. Полный список первых интегралов в задаче о движении четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования // Доклады РАН. 2011. Т. 440. № 2. 187-190.
  16. 16. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.
  17. 17. Polyanin A.D., & Zaitsev V.F. (2017). Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315117638
  18. 18. Шабат Б.В. Введение в комплексный анализ. М.: Наука, 1987.
  19. 19. Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005.
  20. 20. Тамура И. Топология слоений. М.: Мир, 1979.
  21. 21. Шамолин М.В. Динамические системы с переменной диссипацией: подходы, методы, приложения // Фундам. и прикл. матем. 2008. Т. 14.№ 3. 3-237.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library