Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ЧИСЛЕННОЕ РЕШЕНИЕ ИНТЕГРОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ТЕОРИИ ВЯЗКОУПРУГОСТИ С ЯДРАМИ ЭКСПОНЕНЦИАЛЬНОГО И РАБОТНОВСКОГО ТИПОВ

Код статьи
S3034504925010116-1
DOI
10.7868/S3034504925010116
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 521 / Номер выпуска 1
Страницы
88-95
Аннотация
В дифференциальных уравнениях, описывающих поведение сплошных сред с ползучестью,в соответствии с линейной теории Вольтерра, применимой к широкому перечню материалов с аморфной и гетерогенной структурой, присутствуют операторы интегрального типа. В этих уравнениях ядро интегрального оператора представимо в виде суммы экспонент, либо в виде слабосингулярного ядра (функции Работнова). Получение аналитического решения для рассматриваемых уравнений в ряде случаев проблематично, отсюда возникает необходимость разработки численного метода и алгоритма для решения подобных уравнений, учитывающий память рассматриваемой среды. Для решения этих уравнений в работе используется сеточно-характеристический метод и метод покоординатного расщепления (для многомерных задач). Численно исследована аппроксимация и устойчивость предложенного метода.
Ключевые слова
интегродифференциальное уравнение функция Работнова дробная производная по Капуто вязкоупругость
Дата публикации
03.02.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
68

Библиография

  1. 1. Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
  2. 2. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
  3. 3. Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. 4-е изд. Москва: Изд-во АН СССР, 1954.
  4. 4. Локшин А.А., Суворова Ю.В. Математическая теория распространения волн в средах с памятью. М.: Изд-во Моск. ун-та, 1982. 152 с.
  5. 5. Локшин А.А., Сагомонян Е.А. Нелинейные волны в механике твердого тела: Метод факторизации. М.: Изд-во МГУ, 1989. 144 с.
  6. 6. Суворова Ю.В., Ахундов М.Б. Длительное разрушение изотропной среды в условиях сложного напряженного состояния // Машиноведение. 1986. № 4. С. 40—45.
  7. 7. Суворова Ю.В. О нелинейно-наследственном уравнении Ю.Н. Работнова и его приложениях // Механика твердого тела. 2004. № 1. С. 174-181.
  8. 8. Иванов В.Б., Петров И.Б., Суворова Ю.В. Расчет волновых процессов в наследственных вязкоупругих средах // Механика композитных материалов. 1990. № 3. С. 447-450.
  9. 9. Иванов В.Д., Петров И.Б. Суворова Ю.В. Численное решение двумерных динамических задач наследственной теории вязкоупругости // Механика композитных материалов. 1989. № 3. С. 419-424.
  10. 10. Власов В.В., Раутиан Н.А., Корректная разрешимость и спектральный анализ абстрактных гиперболических интегродифференциальных уравнений, Тр. сем. им. И.Г. Петровского, 28, Изд-во Моск. ун-та, М., 2011, 75-113; J. Math. Sci. (N. Y.), 179:3 (2011), 390-414.
  11. 11. Власов В.В., Раутиан Н.А. Исследование интегродифференциальных уравнений, возникающих в теории вязкоупругости // Известия вузов. Математика. 2012. № 6. С. 56-60.
  12. 12. Власов В.В., Раутиан Н.А. Корректная разрешимость и спектральный анализ интегродифференциальных уравнений наследственной механики // Ж. вычисл. матем. и матем. физ. 2012. № 8. С. 1367-1376.
  13. 13. Alikhanov A.A. A new difference scheme for the time fractional diffusion equation // Journal of Computational Physics. 2014. Р. 424-438.
  14. 14. Zhang Z.Z., Sun Z.Z., Liao H.L. Finite differences methods for the time fractional diffusion equation on non-uniform meshs // J. Comput. Phys. 2014. Р. 195-210.
  15. 15. Малиева Ф.Ф., Бейбалаев В.Д. О сходимости разностного метода решения задачи Коши для обыкновенного дифференциального уравнения с оператором дробного дифференцирования Римана-Лиувилля // Известия вузов. Северокавказский регион. 2018. № 2. С. 30-34.
  16. 16. Учайкин В.В. Метод дробных производных. Ульяновск: Издательство “Артишок”, 2008. 512 с.
  17. 17. Ghoreishi F., Ghaffari R., Saad N. Fractional Order Runge-Kutta methods // Fractal and Fractional. 2023. № 7. Р. 245-269.
  18. 18. Diethelm K., Ford N.J., Alan D. Freed Detailed error analysis for a fractional Adams method // Numerical algorithms. 2004.
  19. 19. Савченко А.О. Численный метод решения интегральных уравнений Вольтерра со слабой сингулярностью // Сиб. журн. вычисл. матем. 2003. № 6. С. 181-195.
  20. 20. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
  21. 21. Самарский А.А. Теория разностных схем. М.: Главная редакция физико-математической литературы изд-ва “Наука”, 1977. 656 с.
  22. 22. Leveque R.J. Finite-Volume Methods for Hyperbolic Problems. Cambridge: Cambridge university press, 2004. 580 р.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека