RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ON THE DETERMINISM OF PATHS ON SUBSTITUTION COMPLEXES

PII
S3034504925010073-1
DOI
10.7868/S3034504925010073
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
43-62
Abstract
The work is devoted to the study of the combinatorial properties of determinism for a family of substitution complexes consisting of quadrangles glued together side-to-side. These properties are useful in constructing algebraic structures with a finite number of defining relations. In particular, this method was used to construct a finitely defined infinite nilsemigroup satisfying the identity x9 = 0. This construction solves the problem of L.N. Shevrin and M.V. Sapir. In this paper, we study the possibility of coloring the entire family of complexes in a finite number of colors, for which the weak determinism property is satisfied: if the colors of the three vertices of a certain quadrilateral are known, then the color of the fourth side is uniquely determined, except in some cases of a special arrangement of the quadrilateral. Even weak determinism is enough to construct a finitely defined nilsemigroup; when using this construction, the proof is reduced in scope. The properties of determinism were studied earlier within the framework of the theory of tessellations; in particular, Kari and Papasoglu constructed a set of square tiles that allowed only aperiodic tessellations of the plane and had determinism: the colors of the two adjacent edges were uniquely determined by the colors of the two remaining edges.
Keywords
детерминированность апериодические замощения конечно определенные полугруппы проблемы бернсайдовского типа
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
65

References

  1. 1. Wang Hao. Proving theorems by pattern recognition—II, Bell System Tech. Journal 40(1):1-41, 1961.
  2. 2. Berger R., The undecidability of the domino problem, Ph.D. thesis, Harvard University, July 1964.
  3. 3. Mozes S. Tilings, substitution systems and dynamical systems generated by them., J. Analyse Math 53 (1989), no. 1, 139-186.
  4. 4. Goodman-Strauss C. Matching rules and substitution tilings. Ann. of Math. (2) 147 (1998), no. 1, 181-223. 41-82.
  5. 5. Robinson R.M., Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathematicae 12 (1971), 177-209.
  6. 6. Conway J., Lagarias J. Tiling with polyminoes and combinatorial group theory./ J. Combin. Theory Ser. A. 1990. V. 53, 2, 183-208.
  7. 7. Grunbaum B., Shephard G.C. Tilings and patterns, Freemann, NY 1986.
  8. 8. Свердловская тетрадь: Нерешенные задачи теории полугрупп. Выпуск 3, 1989. — 40 с.
  9. 9. Kari J, Papasoglu. Deterministic aperiodic tile sets. GAFA, Geom. funct. anal. Vol. 9 (1999) 353-369.
  10. 10. Иванов-Погодаев И.А., Канель-Белов А.Я. Конечно определенная нильполугруппа: комплексы с равномерной эллиптичностью, Изв. РАН. Сер. матем., 2021, том 85, выпуск 6, страницы 126-163.
  11. 11. Иванов-Погодаев И.А., Канель-Белов А.Я. Детерминированная раскраска семейства комплексов // Фундамент. и прикл. матем., 24:2 (2022), 37-180.
  12. 12. Белов-Канель А.Я., Иванов-Погодаев И.А., Конструкция бесконечной конечно определенной нильполугруппы, Доклады РАН. Математика, информатика, процессы управления, 101:2 (2020), 81-85.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library