RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ON THE NUMERICAL SOLUTION OF THE THREE-DIMENSIONAL NEUMANN PROBLEM FOR THE HELMHOLTZ EQUATION BY THE POTENTIAL METHOD

PII
S2686954325030087-1
DOI
10.31857/S2686954325030087
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 523 / Issue number 1
Pages
45-49
Abstract
The three-dimensional exterior Neumann problem for the Helmholtz equation is considered. Using the potential method, it is reduced to a boundary weakly singular Fredholm integral equation of the second kind, which is solved numerically. The accuracy is increased and the computational complexity of the numerical solution algorithm is reduced by averaging the kernel of the integral operator and localizing its singular part during discretization using simple analytical expressions. Examples of using this approach in the numerical solution of the original problem are given.
Keywords
интегральное уравнение численный метод уравнение Гельмгольца задача Неймана
Date of publication
19.04.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Смагин С.И. О численном решении интегрального уравнения I рода со слабой особенностью в ядре на замкнутой поверхности // Докл. РАН. Матем., информ., проц. упр. 2022. Т. 505. №1. С. 14–18. https://doi.org/10.31857/S2686954322040178
  2. 2. Greengard L., O’Neil M., Rachh M., Vico F. Fast multipole methods for the evaluation of layer potentials with locally-corrected quadratures // Journal of Computational Physics: X. 2021. V. 10. 100092. https://doi.org/10.1016/j.jcpx.2021.100092
  3. 3. Izzo F., Runborg O., Tsai R. Corrected trapezoidal rules for singular implicit boundary integrals // Journal of Computational Physics. 2022. V. 461. 111193. https://doi.org/10.1016/j.jcp.2022.111193
  4. 4. Beale J.T., Storm M., Tlupova S. The adjoint double layer potential on smooth surfaces in ℝ³ and the Neumann problem // Advances in Computational Mathematics. 2024. V. 50. 29. https://doi.org/10.1007/s10444-024-10111-0
  5. 5. Козmon Д., Кресс Р. Методы интегральных уравнений в теории рассеяния: Пер. с англ. М.: Мир, 1987. 311 с.
  6. 6. Каширин А.А., Смагин С.И. О численном решении задач Дирихле для уравнения Гельмгольца методом потенциалов // Ж. вычислителем. и матем. физ. 2012. Т. 52. № 8. С. 1492–1505.
  7. 7. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Издательство Московского университета, 1999. 798 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library