В недавних совместных работах авторов этой заметки решена известная проблема, остававшаяся открытой в течение многих лет, и, тем самым было доказано, что для произвольных сжатий в гильбертовом пространстве с ядерной разностью существует интегрируемая функция спектрального сдвига, для которой справедлив аналог формулы следов Лифшица–Крейна. Аналогичные результаты были получены и для пар диссипативных операторов. При этом в отличие от случая самосопряжённых и унитарных операторов может случиться так, что не существует вещественнозначной интегрируемой функции спектрального сдвига. В этой заметке мы анонсируем результаты, которые дают достаточные условия для существования вещественнозначной интегрируемой функции спектрального сдвига для пар сжатий. Мы также рассматриваем случай пар диссипативных операторов.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации