Рассматривается система полулинейных эллиптических уравнений второго порядка в многомерной области, граница которой произвольным образом искривляется и содержится в узком слое вдоль невозмущенной границы. На искривленной границе задается условие Дирихле или условие Неймана. В случае условия Неймана на структуру искривления дополнительно накладываются достаточно естественные и весьма слабые условия. Показано, что в таких предположениях усредненной будет краевая задача для той же системы в невозмущенной области с краевым условием того же типа, что на возмущенной границе. Основной результат – соответствующие операторные - и L-оценки.
Рассматривается несамосопряженный оператор Шрёдингера на единичном отрезке с краевыми условиями Дирихле, возмущённый оператором малого сдвига. Основной результат – трехчленная асимптотика собственных значений по номеру, равномерная по малому сдвигу. Также показано, что система собственных и присоединенных функций рассматриваемого оператора образует базис Бари в пространстве функций, квадратично интегрируемых на рассматриваемом единичном отрезке.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation