Рассматривается обратная оптимизационная спектральная задача: для заданного матричного потенциала \({{Q}_{0}}(x)\) требуется найти ближайшую к нему матричную функцию \(\hat {Q}(x)\) такую, чтобы k-е собственное значение матричного оператора Штурма–Лиувилля с потенциалом \(\hat {Q}(x)\) совпадало с заданным числом \(\lambda {\kern 1pt} *\). Основной результат работы заключается в доказательстве теорем существования и единственности. Установлены явные формулы для оптимального потенциала через решения систем нелинейных дифференциальных уравнений второго порядка, известных в математической физике как системы нелинейных уравнений Шрёдингера.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации