Впервые бикомпактные схемы обобщаются на нестационарные уравнения Навье–Стокса для сжимаемой теплопроводной жидкости. Предлагаемые схемы обладают аппроксимацией четвертого порядка по пространству и второго порядка по времени, абсолютно устойчивы (в приближении замороженных коэффициентов), консервативны, экономичны. Одна из новых схем испытывается на нескольких двумерных тестовых задачах. Показывается, что при сгущении сетки она сходится с повышенным третьим порядком. Проводится сравнение со схемой WENO5-MR. Демонстрируется превосходство выбранной бикомпактной схемы в разрешении вихрей и ударных волн, а также их взаимодействия.
Впервые представлены противопоточные бикомпактные схемы третьего порядка аппроксимации по пространству. Получена формула для множителя перехода произвольной полностью дискретной бикомпактной схемы с интегрированием по времени методом Рунге–Кутты. Для схемы первого порядка аппроксимации по времени исследованы устойчивость, монотонность, для схемы третьего порядка – диссипативные и дисперсионные свойства. Демонстрируются преимущества новых схем относительно их центрированных аналогов.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации