RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Compactification of spaces of measures and pseudocompactness

PII
10.31857/S2686954324040111-1
DOI
10.31857/S2686954324040111
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 518 / Issue number 1
Pages
75-79
Abstract
We prove pseudocompactness of a Tychonoff space X and the space P(X) of Radon probability measures on it with the weak topology under the condition that the Stone–ech compactification of the space P(X) is homeomorphic to the space P(βX) of Radon probability measures on the Stone–ech compactification of the space X.
Keywords
компактификации Стоуна–Чеха пространство радоновских вероятностных мер слабая топология псевдокомпактность
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
37

References

  1. 1. Богачев В.И. // Функц. анал. и его прил. 2024. Т. 58. № 1. С. 4–21.
  2. 2. Bogachev V.I. Measure theory. V. 2. Springer, New Your, 2007.
  3. 3. Bogachev V.I. Weak convergence of measures. Amer. Math. Soc., Providence, Rhode Island, 2018.
  4. 4. Banaschewski B. // Canadian J. Math. 1956. V. 8. P. 395–398.
  5. 5. Henriksen M., Isbell J.R. // Illinois J. Math. 1957. V. 1. P. 574–582.
  6. 6. Walker R.C. The Stone-Čech compactification. Springer-Verlag, Berlin – New York, 1974.
  7. 7. Colmez J. // C. R. Acad. Paris. 1952. T. 234. P. 1019–1921.
  8. 8. Angoa-Amador J., Contreras-Carreto A., Ibarra-Contreras M., Tamariz-Mascarúa A. Basic and classic results on pseudocompact spaces. In: Pseudocompact topological spaces. A survey of classic and new results with open problems. Edited by Michael Hrušák, Ángel Tamariz-Mascarúa and Mikhail Tkachenko. Developments in Mathematics, 55, pp. 1–38, Springer, Cham, 2018.
  9. 9. Koumoullis G. // Adv. Math. 1996. V. 124. № 1. P. 1–24.
  10. 10. Wójcicka M. // Bull. Polish Acad. Sci. Math. 1985. V. 33. P. 305–311.
  11. 11. Dorantes-Aldama A., Okunev O., Tamariz-Mascarúa Á. Weakly pseudocompact spaces. In: Pseudocompact topological spaces. A survey of classic and new results with open problems. Edited by Michael Hrušák, Ángel Tamariz-Mascarúa and Mikhail Tkachenko. Developments in Mathematics, 55, pp. 151–190, Springer, Cham, 2018.
  12. 12. Brown J.B. // Fund. Math. 1977. V. 96. P. 189–193.
  13. 13. Brown J.B., Cox G.V. // Fund. Math. 1984. V. 121. P. 143–148.
  14. 14. Krupski M. // J. Inst. Math. Jussieu. 2022. V. 21. № 3. P. 851–868.
  15. 15. Koumoullis G., Sapounakis A. // Mich. Math. J. 1984. V. 31. № 1. P. 31–47.
  16. 16. Архангельский А.В., Пономарев В.И. Основы общей топологии в задачах и упражнениях. Наука, М., 1974.
  17. 17. Vaughan J.E. Countably compact and sequentially compact spaces. In: Handbook of set-theoretic topology, pp. 569–602, North-Holland, Amsterdam, 1984.
  18. 18. Gillman L., Jerison M. Rings of continuous functions. Van Nostrand, Princeton – New York, 1960.
  19. 19. van Mill J. An introduction to βω. In: Handbook of set-theoretic topology, pp. 503–567, North-Holland, Amsterdam, 1984.
  20. 20. Szymański A. // Colloq. Math. 1977. V. 37. P. 185–192.
  21. 21. Wimmers E. // Israel J. Math. 1982. V. 43. № 1. P. 28–48.
  22. 22. Энгелькинг Р. Общая топология. Мир, М., 1986.
  23. 23. Hernández-Hernández F., Hrušák M. Topology of Mrówka-Isbell spaces. In: Pseudocompact topological spaces. A survey of classic and new results with open problems. Edited by Michael Hrušák, Ángel Tamariz-Mascarúa and Mikhail Tkachenko. Developments in Mathematics, 55, pp. 253–289, Springer, Cham, 2018.
  24. 24. Lipecki Z. // Colloq. Math. 2011. V. 123. № 1. P. 133–147.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library