RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

On a Dini type blow-up condition for solutions of nonlinear higher order differential inequalities

PII
10.31857/S2686954324040039-1
DOI
10.31857/S2686954324040039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 518 / Issue number 1
Pages
18-21
Abstract
We obtain a Dini type blow-up condition for solutions of the differential inequality where are integers and and are some functions.
Keywords
дифференциальные неравенства высокого порядка нелинейность разрушение решений
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
40

References

  1. 1. Galaktionov V.A., Mitidieri E.L., Pohozaev S.I. Blow-up for higher-order parabolic, hyperbolic, dispersion and Schroedinger equations. Monographs and Research Notes in Mathematics. Boca Raton, FL: CRC Press, 2014.
  2. 2. Filippucci R. Nonexistence of positive entire weak solutions of elliptic inequalities // Nonlin. Anal. 2009. V. 70. P. 2903–2916.
  3. 3. Filippucci R., Pucci P., Rigoli M. Non-existence of entire solutions of degenerate elliptic inequalities with weights // Arch. Ration. Mech. Anal. 2008. V. 188. P. 155–179. Erratum: 2008. V. 188. P. 181.
  4. 4. Ghergu M., Radulescu V. Existence and nonexistence of entire solutions to the logistic differential equation, // Abstr. and Appl. Anal. 2003. V. 17. P. 995–1003.
  5. 5. Keller J.B. On solution of Δu = f (u)// Comm. Pure. Appl. Math. 1957. V. 10. P. 503–510.
  6. 6. Kondratiev V.A., Veron L. Asymptotic behavior of solutions of some nonlinear parabolic or elliptic equations // Asymp. Anal. 1997. V. 14. P. 117–156.
  7. 7. Kon’kov A.A. On properties of solutions of quasilinear second-order elliptic inequalities // Nonlin. Anal. 2015. V. 123–124. P. 89–114.
  8. 8. Kon’kov A.A., Shishkov A.E. Generalization of the Keller–Osserman theorem for higher order differential inequalities // Nonlinearity 2019. V. 32. P. 3012–3022.
  9. 9. Kon’kov A.A., Shishkov A.E. On blow-up conditions for solutions of higher order differential inequalities // Appl. Anal. 2019. V. 98:9. P. 1581–1590.
  10. 10. Marcus M., Shishkov A.E. Fading absorption in non-linear elliptic equations // Ann. Inst. H. Poincaré Anal. Non Lineaire 2013. V. 30. P. 315–336.
  11. 11. Naito Y., Usami H. Entire solutions of the inequality div(A(| Du |)Du) = f (u)// Math. Z. 1997. V. 225. P. 167–175.
  12. 12. Naito Y., Usami H. Nonexistence results of positive entire solutions for quasilinear elliptic inequalities // Canad. Math. Bull. 1997. V. 40. P. 244–253.
  13. 13. Митидиери Э., Похожаев С.И. Априорные оценки и отсутствие решений нелинейных уравнений и неравенств в частных производных. // Тр. МИАН. 2001. Т. 234. С. 3–383.
  14. 14. Osserman R. On the inequality Δu≥f(u)// Pacific J. Math. 1957. V. 7. P. 1641–1647.
  15. 15. Shishkov A.E., Veron L. Admissible initial growth for diffusion equations with weakly superlinear absorption // Commun. Contemp. Math. 2016. V. 18. 05, 1550089.
  16. 16. Veron L. Comportement asymptotique des solutions d'equations elliptiques semi-lineaires dans Rn// Ann. Math. Pure Appl. 1981. V. 127. P. 25–50.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library