RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Graph Condensation for Large Factor Models

PII
10.31857/S2686954324030119-1
DOI
10.31857/S2686954324030119
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 517 / Issue number 1
Pages
66-73
Abstract
The paper proposes an original method for processing large factor models based on graph condensation using machine learning models and artificial neural networks. The proposed mathematical apparatus can be used in problems of planning and managing complex organizational and technical systems, in optimizing large socio-economic objects on the scale of state sectors, to solve problems of preserving the health of the nation (searching for compatibility when taking medications, optimizing resource provision for healthcare).
Keywords
факторная модель конденсация графа кластеризация собственный вектор собственные значения
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
41

References

  1. 1. Четверушкин Б.Н., Судаков В.А. Факторная модель для исследования сложных процессов // Доклады Академии наук. 2019. Т. 489. № 1. С. 17–21.
  2. 2. Forrester J.W. Policies, decisions and information sources for modeling // European Journal of Operational Research. 1992. V. 59. № 1. P. 42–63.
  3. 3. Honti G., Dörgő G., Abonyi J. Network analysis dataset of system dynamics models // Data in Brief. 2019. V. 27. P. 104723.
  4. 4. Jain A., Murty M., Flynn P. Data Clustering: A Review // ACM Computing Surveys. 1999. V. 31. № 3.
  5. 5. Lance G.N., Williams W.T. A general theory of classification sorting strategies in hierarchical system // Comp. J. 1967. № 9. P. 373–380.
  6. 6. Kohonen T. Essentials of the self-organizing map // Neural Networks. 2013. V. 37. P. 52–65.
  7. 7. Alam A., Ahamad M.K. K-Means Hybridization with Enhanced Firefly Algorithm for High-Dimension Automatic Clustering // Journal of Advanced Research in Applied Sciences and Engineering Technology. 2023. V. 33. № 3. P. 137–153.
  8. 8. Reynolds D. Gaussian Mixture Models // Encyclopedia of Biometrics. Boston, MA: Springer, 2009.
  9. 9. Нестеров В.А., Судаков В.А., Сыпало К.И., Титов Ю.П. Матрица нечетких корреспонденций модели авиационных перевозок // Известия Российской академии наук. Теория и системы управления. 2022. Т. 6. № 6. С. 95–102.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library