RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Induced forests and trees in Erdös–Rényi random graph

PII
10.31857/S2686954324020041-1
DOI
10.31857/S2686954324020041
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 516 / Issue number 1
Pages
21-25
Abstract
We prove concentration in the interval of size for the size of the maximum induced forest (of bounded and unbounded degree) in for for arbitrary fixed . We also show 2-point concentration of the size of the maximum induced forest (and tree) of bounded degree in the binomial random graph for
Keywords
случайный граф граф Эрдёша–Реньи индуцированный подграф дерево лес
Date of publication
15.10.2024
Year of publication
2024
Number of purchasers
0
Views
43

References

  1. 1. Bollobás B., Erdős P. Cliques in random graphs // Mathematical Proceedings of the Cambridge Philosophical Society. 1976. V. 80. P. 419–427.
  2. 2. Fountoulakis N., Kang R.J., McDiarmid C. The t-stability number of a random graph // The Electronic Journal of Combinatorics. 2010. V. 17. P. 1–10.
  3. 3. Fountoulakis N., Kang R.J., McDiarmid C. Largest sparse subgraphs of random graphs // European Journal of Combinatorics. 2014. V. 35. P. 232–244.
  4. 4. Dutta K., Subramanian C.R. On Induced Paths, Holes and Trees in Random Graphs // 2018 Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics. 2018. P. 168–177.
  5. 5. Kamaldinov D., Skorkin A., Zhukovskii M. Maximum sparse induced subgraphs of the binomial random graph with given number of edges // Discrete Mathematics. 2021. V. 344. P. 112205.
  6. 6. Krivoshapko M., Zhukovskii M. Maximum induced forests in random graphs // Discrete Applied Mathematics. 2021. V. 305. P. 211–213.
  7. 7. Frieze A.M. On the independence number of random graphs // Discrete Mathematics. 1990. V. 81. P. 171–175.
  8. 8. Fernandez de la Vega W. The largest induced tree in a sparse random graph // Random Structures and Algorithms. 1996. V. 9. P. 93–97.
  9. 9. Cooley O., Draganić N., Kang M., Sudakov B. Large Induced Matchings in Random Graphs // SIAM Journal on Discrete Mathematics. 2021. V. 35. P. 267–280.
  10. 10. Draganić N., Glock S., Krivelevich M. The largest hole in sparse random graphs // Random Structures & Algorithms. 2022. V. 61. P. 666–677.
  11. 11. Janson S., Łuczak T., Ruciński A. Random Graphs. John Wiley & Sons, Inc. 2000.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library