RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Topological product of modal logics with McKinsey axiom

PII
10.31857/S2686954324010138-1
DOI
10.31857/S2686954324010138
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 515 / Issue number 1
Pages
84-91
Abstract
We consider products of modal logics in topological semantics and prove that the topological product of S4.1 and S4 is the fusion of logics S4.1 and S4 plus one extra axiom. This is an example of a topological product of logics that is greater than the fusion but less than the semiproduct of the corresponding logics.
Keywords
модальная логика топологическая семантика произведение модальных логик аксиома Маккинси
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
55

References

  1. 1. Bezhanishvili G., Esakia L., Gabelaia D. Some results on modal axiomatization and definability for topological spaces // Studia Logica. 2005. Vol. 81 (3). P. 325–355.
  2. 2. Bezhanishvili G., Gabelaia D., Lucero-Bryan J. Modal logics of metric spaces // The Review of Symbolic Logic. 2015. Vol. 8 (1). P. 178–191.
  3. 3. Bezhanishvili G., Harding J. Modal logics of Stone spaces // Order. 2012. Vol. 29 (2). P. 271–292.
  4. 4. Blackburn P., de Rijke M., Venema Y. Modal Logic. Cambridge University Press, 2002.
  5. 5. Chagrov A., Zakharyaschev M. Modal Logic. Clarendon Press, Oxford, 1997.
  6. 6. Gabbay D.M., Kurucz A., Wolter F., Zakharyaschev M. Many-dimensional modal logics: theory and applications / Studies in logic and the foundations of mathematics. Vol. 148. Elsevier, 2003.
  7. 7. Gabelaia D. Modal Definability in Topology. Master thesis. ILLC, University of Amsterdam, 2001.
  8. 8. Goldblatt R. The McKinsey axiom is not canonical // The Journal of Symbolic Logic. 1991. Vol. 56 (2. P. 54–562.
  9. 9. Kremer P. The topological product of S4 and S5. Unpublished, 2011.
  10. 10. Kudinov A., Shapirovsky I. Finite model property of pretransitive analogs of S5 // Russian Mathematical Surveys. 2012. Vol. 67 (4). P. 721–777.
  11. 11. Kudinov A. Modal logic of some products of neighborhood frames // Advances in Modal Logic. 2012. P. 386–394.
  12. 12. Kudinov A. On neighbourhood product of some Horn axiomatizable logics // Logic Journal of the IGPL. 2018. Vol. 26 (3). P. 316–338.
  13. 13. Benthem van J., Bezhanishvili G., Cate B., Sarenac D. Multimodal logics of products of topologies // Studia Logica. 2006. Vol. 84. P. 369–392.
  14. 14. Benthem van J., Bezhanishvili G. Modal logics of space / Handbook of spatial logics. Springer, 2007. P. 217–298.
  15. 15. Дробышевич С.А., Одинцов С.П., Сперанский С.О. Введение в неклассические логики. Новосибирск: РИЦ НГУ, 2014.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library