RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

UPPER BOUND FOR THE COMPETITIVE FACILITY LOCATION PROBLEM WITH DEMAND UNCERTAINTY

PII
10.31857/S2686954323700327-1
DOI
10.31857/S2686954323700327
Publication type
Status
Published
Authors
Volume/ Edition
Volume 514 / Issue number 1
Pages
20-25
Abstract
We consider a competitive facility location problem with two competing parties operating in a situation of uncertain demand scenario. The problem to find the best solutions for the parties is formulated as a discrete bi-level mathematical programming problem. In the paper, we suggest a procedure to compute an upper bound for the objective function on subsets. The procedure could be employed in implicit enumeration schemes capable to compute an optimal solution for the problem under study. Within the procedure, additional constraints iteratively augment the high-point relaxation of the initial bi-level problem, what strengthens the relaxation and improves the upper bound’s quality. New procedure to generate such cuts allows to construct the strongest cuts without enumerating the parameters encoding them.
Keywords
двухуровневое программирование игра Штакельберга конкурентное размещение предприятий пессимистическое оптимальное решение
Date of publication
01.01.2023
Year of publication
2023
Number of purchasers
0
Views
40

References

  1. 1. Береснев В.Л., Мельников А.А. Алгоритм генерации отсечений для дискретной задачи конкурентного размещения предприятий. Доклады Академии наук. 2018. V. 480. № 5. P. 515–518. https://doi.org/10.1134/S1064562418030183
  2. 2. Beresnev V., Melnikov A. Approximation of the competitive facility location problem with MIPs. Computers & Operations Research. 2019. V. 104. P. 139–148, https://doi.org/10.1016/j.cor.2018.12.010
  3. 3. Ashtiani M. Competitive location: A state-of-art review. International Journal of Industrial Engineering Computations. 2016. V. 7. № 1. P. 1–18.https://doi.org/10.5267/j.ijiec.2015.8.002
  4. 4. Aras N., Küçükaydın H. Bilevel Models on the Competitive Facility Location Problem. In: Mallozzi L., D’Amato E., Pardalos P. (eds) Spatial Interaction Models. Springer Optimization and Its Applications, vol 118. Springer, Cham. 2017. P. 1–19. https://doi.org/10.1007/978-3-319-52654-6_1
  5. 5. Karakitsiou A. Modeling discrete competitive facility location. Springer Cham, 2015, SpringerBriefs in Optimization, 54.
  6. 6. Mishra M., Singh S.P., Gupta M.P. Location of competitive facilities: a comprehensive review and future research agenda. Benchmarking, 2022.https://doi.org/10.1108/BIJ-11-2021-0638
  7. 7. Dempe S. Bilevel Optimization: Theory, Algorithms, Applications and a Bibliography, In: S. Dempe, A. Zemkoho (eds) Bilevel Optimization: Advances and Next Challenges, Springer International Publishing, Cham. 2020. P. 581–672. https://doi.org/10.1007/978-3-030-52119-6_20
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library