- Код статьи
- 10.31857/S2686954323700315-1
- DOI
- 10.31857/S2686954323700315
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 514 / Номер выпуска 1
- Страницы
- 5-11
- Аннотация
- Задача оптимального управления на бесконечном интервале времени с общими концевыми ограничениями сводится к семейству стандартных задач на конечных интервалах, содержащих величину условной стоимости фазового вектора в качестве терминального члена. При помощи развитого подхода для задачи с общим асимптотическим концевым ограничением получен новый вариант принципа максимума Понтрягина, содержащий явное описание сопряженной переменной. В случае задачи со свободным правым концом данный подход приводит к варианту принципа максимума в нормальной форме, сформулированному полностью в терминах функции условной стоимости.
- Ключевые слова
- оптимальное управление бесконечный горизонт асимптотическое концевое ограничение функция условной стоимости принцип максимума Понтрягина
- Дата публикации
- 01.01.2023
- Год выхода
- 2023
- Всего подписок
- 0
- Всего просмотров
- 44
Библиография
- 1. Clarke F. Functional analysis, calculus of variations and optimal control. Graduate Texts in Mathematics. V. 264. London: Springer-Verlag, 2013.
- 2. Ramsey F.P. A mathematical theory of saving // Econ. J. 1928. V. 38. P. 543–559.
- 3. Асеев С.М., Вельов В.М. Другой взгляд на принцип максимума для задач оптимального управления с бесконечным горизонтом в экономике // УМН. 2019. Т. 74. № 6. С. 3–54.
- 4. Carlson D.A., Haurie A.B., Leizarowitz A. Infinite horizon optimal control. Deterministic and Stochastic Systems. Berlin: Springer, 1991.
- 5. Seierstad A., Sydsæ ter K. Optimal control theory with economic applications. Amsterdam: North-Holland, 1987.
- 6. Acemoglu D. Introduction to modern economic growth. Princeton: Princeton Univ. Press, 2008.
- 7. Barro R.J., Sala-i-Martin X. Economic growth. New York: McGraw Hill, 1995.
- 8. Halkin H. Necessary conditions for optimal control problems with infinite horizons // Econometrica. 1974. V. 42. P. 267–272.
- 9. Valente S. Sustainable development, renewable resources and technological progress // Environmental and Resource Economics. 2005. V. 30. № 1. P. 115–125.
- 10. Valente S. Optimal growth, genuine savings and long-run dynamics // Scottish Journal of Political Economy. 2008. V. 55. № 2. P. 210–226.
- 11. Aseev S.M., Veliov V.M. Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions // Тр. Ин-та математики и механики УрО РАН. 2014. Т. 20. № 3. С. 41–57.
- 12. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М: Наука. Глав. ред. физ.-мат. лит., 1979.
- 13. Aseev S.M., Veliov V.M. Needle variations in infinite-horizon optimal control. Variational and Optimal Control Problems on Unbounded Domains. Contemporary Mathematics. 2014. V. 619. Wolansky G., Zaslavski A.J., Eds., Providence: Amer. Math. Soc. 1–17.
- 14. Aseev S.M., Veliov V.M. Maximum principle for infinite-horizon optimal control problems with dominating discount // Dynamics of Continuous, Discrete and Impulsive Systems. Ser. B: Applications & Algorithms. 2012. V. 19. № 1–2. P. 43–63.
- 15. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. М.: Наука. Глав. ред. физ.-мат. лит., 1985.
- 16. Асеев С.М. Сопряженные переменные и межвременные цены в задачах оптимального управления на бесконечном интервале времени // Тр. МИАН. 2015. Т. 290. С. 239–253.
- 17. Кудрявцев Л.Д. Курс математического анализа. Учеб. для вузов в 3 тт. Т. 2. Ряды. Дифференциальное и интегральное исчисление функций многих переменных. М.: Дрофа, 2004.
- 18. Aseev S.M. The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions // J. Math. Sci. 2023. V. 270. № 4. P. 531–546.
- 19. Асеев С.М. Принцип максимума для задачи оптимального управления с асимптотическим концевым ограничением // Тр. Ин-та математики и механики УрО РАН. 2021. Т. 27. № 2. С. 35–48.
- 20. Бродский Ю.И. Необходимые условия слабого экстремума для задач оптимального управления на бесконечном интервале времени // Матем. сб. 1978. Т. 105(147). № 3. С. 371–388.
- 21. Seierstad A. A maximum principle for smooth infinite horizon optimal control problems with state constraints and with terminal constraints at infinity. // Open J. Optim. 2015. V. 4. P. 100–130.