- PII
- 10.31857/S2686954323700236-1
- DOI
- 10.31857/S2686954323700236
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 512 / Issue number 1
- Pages
- 5-9
- Abstract
- The article discusses various modifications of the nonlinear Burgers equation with small parameter and degenerate in solution of the form \(F(u,\varepsilon ) = {{u}_{t}} - {{u}_{{xx}}} + u{{u}_{x}} + \varepsilon {{u}^{2}} - f(x,t) = 0,\) (1) where \(F:\Omega \to C([0,\pi ] \times [0,T])\), \(T > 0\), \(\Omega = {{C}^{2}}([0,\pi ] \times [0,T]\,)\,\mathbb{R}\) and \(u(0,t) = u(\pi ,t) = 0\), \(u(x,0) = \varphi (x)\), \(f(x,t) \in C([0,\pi ] \times [0,T])\), \(\varphi (x) \in C[0,\pi ]\). We will be interested in the most important in applications case of a small parameter ε with oscillating initial conditions of the form \(\varphi (x) = k\sin x\), where k –some, generally speaking, constant depending on ε, and study the question of the existence of a solution in neighborhood of the trivial \((u{\kern 1pt} *,\varepsilon {\kern 1pt} *) = (0,0)\), which corresponds to \(k = k{\kern 1pt} * = 0\) and at what initial Under certain conditions on the values of k, it is possible to construct an analytical approximation of this solution for small ε. We will look for a solution in the traditional way of separation of variables on a subspace of functions of the form \(u(x,t) = v(t)u(x)\), where \(v(t) = c{{e}^{{ - t}}}\), \(u(x) \in {{\mathcal{C}}^{2}}([0,\pi ])\). In this case, the problem under consideration is degenerate at the point \((u{\kern 1pt} *,\varepsilon {\kern 1pt} *) = (0,0)\), since \({\text{Im}}F_{u}^{'}(u{\kern 1pt} *,\varepsilon {\kern 1pt} *) \ne Z = \mathcal{C}([0,\pi ] \times [0,T])\). This follows from the Sturm-Liouville theory. To achieve our goals, we apply the apparatus of p-regularity theory [6, 7, 15, 16] and show that the mapping \(F(u,\varepsilon )\) is 3-regular at the point \((u{\kern 1pt} *,\varepsilon {\kern 1pt} *) = (0,0)\), т.е. p = 3.
- Keywords
- Date of publication
- 01.05.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 41
References
- 1. Baxley J.V. Nonlinear second-order boundary value problems: Continuous dependence and periodic boundary conditions // Rend. Circ. Mat. Palermo. 1982. V. 31. № 2. P. 305–320.
- 2. Brezhneva O.A., Tret’yakov A.A. Marsden: Higher-order implicit function theorems and degenerate nonlinear boundary-value problems // Communications on Pure and Applied Analysis. 2008. V. 7. № 2. P. 293–315.
- 3. Gaines R. Continuous dependence on parameters and boundary data for nonlinear two-point boundary value problems // Pacific J. Math. 1969. V. 28. P. 327–336.
- 4. Grzegorczyk W., Medak B., Tret’yakov A.A. Application of p-regularity theory to nonlinear boundary value problems // Boundary Value Problems. 2013. V. 2013. P. 251, http:/www.boundaryvalueproblems.com/content/2013/1/251
- 5. Ingram S.K. Continuous dependence on parameters and boundary data for nonlinear two-point boundary value problems // Pacific J. Math. 1972. V. 41. P. 395–408.
- 6. Измаилов А.Ф., Третьяков А.А. Фактор-анализ нелинейных отображений. М.: Наука, 1994.
- 7. Измаилов А.Ф., Третьяков А.А. 2-регулярные решения нелинейных проблем. Теория и численные методы. М.: Наука, 1999.
- 8. Medak B. Development of p-regularity apparatus and its application to describing the structure of solution sets of degenerated differential equations, Doctoral thesis, UMCS, Lublin, 2013 (in Polish).
- 9. Medak B., Tret’yakov A.A. Existence of periodic solutions to nonlinear p-regular boundary value problem // Boundary Value Problems. 2015. V. 2015. P. 91. https://doi.org/10.1186/s13661-015-0360-2
- 10. Medak B., Tret’yakov A.A. Application of p-regularity theory to the Duffing equation // Boundary Value Problems. 2017. V. 2017. P. 85. https://doi.org/10.1186/s13661-017-0815-8
- 11. Medak B., Tret’yakov A.A. Continuous dependence of the singular nonlinear Van der Pol equation solutions with respect to the boundary conditions: Elements of p-regularity theory // Journal of Dynamics and Differential Equations. 2021. V. 33. P. 1087–1107. https://doi.org/10.1007/s10884-020-09849-0
- 12. Michael E.A. Continuous selector // Ann. Math. 1956. V. 64. P. 562–580.
- 13. Свешников А.Г., Боголюбов А.Н., Кравцов В.В. Лекции по математической физике. М.: МГУ, Наука, 2004.
- 14. Тихонов А.Н., Василева А.Б., Свешников А.Г. Дифференциальные уравнения. М.: Наука, Москва, Физматлит, 1998.
- 15. Tret’yakov A.A. The implicit function theorem in degenerate problems // Russ. Math. Surv. 1987. V. 42. P. 179–180.
- 16. Tret’yakov A.A., Marsden J.E. Factor analysis of nonlinear mappings: p-regularity theory // Communications on Pure and Applied Analysis. 2003. V. 2. № 4. P. 425–445.