Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Неравенство Бернштейна для производной Рисса дробного порядка, меньшего единицы, целых функций экспоненциального типа

Код статьи
10.31857/S2686954323600611-1
DOI
10.31857/S2686954323600611
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 514 / Номер выпуска 1
Страницы
118-122
Аннотация
Рассматривается неравенство Бернштейна для производной Рисса порядка \(0 < \alpha < 1\) целых функций экспоненциального типа в равномерной норме на вещественной оси. Для этого оператора получена соответствующая интерполяционная формула; она имеет неравномерные узлы. При помощи этой формулы при всех \(0 < \alpha < 1\) найдено точное неравенство Бернштейна, а именно, выписаны экстремальная целая функция и точная константа.
Ключевые слова
целые функции экспоненциального типа производная Рисса неравенство Бернштейна равномерная норма функции Бесселя
Дата публикации
01.01.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
55

Библиография

  1. 1. Горбачев Д.В. Точные неравенства Бернштейна – Никольского для полиномов и целых функций экспоненциального типа // Чебышевский сборник. 2021. Т. 22. № 5. С. 58–110. https://doi.org/10.22405/2226-8383-2021-22-5-58-110
  2. 2. Арестов В.В. Об интегральных неравенствах для тригонометрических полиномов и их производных // Изв. АН СССР. Сер. Мат. 1981. Т. 45. № 1. С. 3–22.
  3. 3. Арестов В.В., Глазырина П.Ю. Неравенство Бернштейна – Сеге для дробных производных тригонометрических полиномов // Тр. ИММ УрО РАН. 2014. Т. 20. № 1. С. 17–31.
  4. 4. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника. 1987.
  5. 5. Civin P. Inequalities for trigonometric integrals // Duke Math. J. 1941. V. 8. № 4. P. 656–665. https://doi.org/10.1215/S0012-7094-41-00855-4
  6. 6. Лизоркин П.И. Оценки тригонометрических интегралов и неравенство Бернштейна для дробных производных // Изв. АН СССР. Сер. мат. 1965. Т. 4. № 3. С. 109–126.
  7. 7. Stein E.M. A characterization of functions arising as potentials. I // Bull. Amer. Math. Soc. 1961. V. 67. № 1. P. 102–104.
  8. 8. Лизоркин П.И. Описание пространств в терминах разностных сингулярных интегралов // Матем. сб. 1970. Т. 81(123). № 1. С. 79–91.
  9. 9. Самко С.Г. О пространствах риссовых потенциалов // Изв. АН СССР. Сер. матем. 1976. Т. 40. № 5. С. 1143–1172.
  10. 10. Ахиезер Н.И. Лекции по теории аппроксимации. М.: Физматлит, 1965.
  11. 11. Соколов Г.Т. О некоторых экстремальных свойствах тригонометрических сумм // Известия Академии наук СССР. VII серия. Отделение математических и естественных наук. 1935. Т. 6–7. С. 857–884.
  12. 12. Szegő G. Über einen Satz des Herrn Serge Bernstein // Schrift. Königsberg. Gelehrten Gesellschaft. 1928. V. 5. № 4. P. 59–70.
  13. 13. Kozko A.I. The exact constants in the Bernstein–Zygmund–Szegő inequalities with fractional derivatives and the Jackson–Nikol’skii inequality for trigonometric polynomials // East J. Approx. 1998. V. 4. № 3. P. 391–416.
  14. 14. Arestov V.V., Glazyrina P.Yu. Sharp integral inequalities for fractional derivatives of trigonometric polynomials // J. Approx. Theory. 2012. V. 164. № 11. P. 1501–1512. https://doi.org/10.1016/j.jat.2012.08.004
  15. 15. Леонтьева А.О. Неравенство Бернштейна–Сегё для производной Рисса тригонометрических полиномов в пространствах с классическим значением точной константы // Матем. сборник. 2023. Т. 214. № 3. С. 135–152. https://doi.org/10.4213/sm982210.4213/sm9822
  16. 16. Ватсон Г.Н. Теория бесселевых функций. М.: ИЛ. 1949.
  17. 17. Владимиров В.С. Уравнения математической физики. М.: Физматлит, 1981.
  18. 18. Frappier C., Olivier P. A quadrature formula involving zeros of Bessel functions // Math. of Computation. 1993. V. 60. № 201. P. 303–316. https://doi.org/10.2307/2153168
  19. 19. Grozev G.R., Rahman Q. I. A quadrature formula with zeros of Bessel functions as nodes // Math. of Computation. 1995. V. 64. № 210. P. 715–725. https://doi.org/10.2307/2153447
  20. 20. Горбачев Д.В. Экстремальные задачи для целых функций экспоненциального сферического типа // Матем. заметки. 2000. Т. 68. № 2. С. 179–187. https://doi.org/10.4213/mzm936
  21. 21. Горбачев Д.В. Экстремальная задача для периодических функций с носителем в шаре Матем. заметки. 2001. Т. 69. № 3. С. 346–352. https://doi.org/10.4213/mzm508
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека