RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

OPERATOR GROUP GENERATED BY A ONE-DIMENSIONAL DIRAC SYSTEM

PII
10.31857/S2686954323600568-1
DOI
10.31857/S2686954323600568
Publication type
Status
Published
Authors
Volume/ Edition
Volume 514 / Issue number 1
Pages
79-81
Abstract
In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space \(\mathbb{H} = {{\left( {{{L}_{2}}[0,\pi ]} \right)}^{2}}\). The potential is assumed to be summable. It is proved that this group is well-defined in the space \(\mathbb{H}\) and in the Sobolev spaces \(\mathbb{H}_{U}^{\theta }\), \(\theta > 0\), with fractional index of smoothness \(\theta \) and under boundary conditions \(U\). Similar results are proved in the spaces \({{\left( {{{L}_{\mu }}[0,\pi ]} \right)}^{2}}\), \(\mu \in (1,\infty )\). In addition we obtain estimates for the growth of the group as \(t \to \infty \).
Keywords
оператор Дирака суммируемый потенциал операторная группа
Date of publication
01.01.2023
Year of publication
2023
Number of purchasers
0
Views
48

References

  1. 1. Шкаликов А.А. // УМН. 1979. Т. 34. № 5(209). С. 235–236.
  2. 2. Savchuk A.M., Shkalikov A.A. // Math. Notes. 2014. V. 96 № 5. P. 777–810.
  3. 3. Гомилко А.M. // Функц. анализ и его прил. 1999. Т. 33 № 4. С. 66–69.
  4. 4. Albeverio S., Hryniv R., Mykytyuk Ya. // Russian J. Math. Phys. 2005. V. 12. № 4. P. 406–42.
  5. 5. Баскаков А.Г., Дербушев А.В., Щербаков А.О. // Изв. РАН. Сер. матем. 2011. Т. 75. № 3. С. 3–28.
  6. 6. Djakov P., Mityagin B. // Proc. Amer. Math. Soc. 2013. V. 141. № 4. P. 1361–1375.
  7. 7. Beigl A., Eckhardt J., Kostenko A., Teschl G. // J. Math. Phys. 2015. V. 56, 012102.
  8. 8. Djakov P., Mityagin B. // Russ. Math. Surv. 2020. V. 75. № 4. P. 587–626.
  9. 9. Савчук А.М., Садовничая И.В. // Совр. мат-ка. Фунд. напр-я. 2020. Т. 66. № 3. С. 373–530.
  10. 10. Лунев А.А., Маламуд М.М. // Зап. научн. сем. ПОМ-И. 2022. Т. 516. С. 69–120.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library