RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

STUDY OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS BY METHODS OF SEMIGROUP THEORY

PII
10.31857/S2686954323600283-1
DOI
10.31857/S2686954323600283
Publication type
Status
Published
Authors
Volume/ Edition
Volume 513 / Issue number 1
Pages
88-92
Abstract
The abstract Volterra integro-differential equations are investigated, which are operator models of problems of viscoelasticity theory. The class of equations under consideration also includes the Gurtin-Pipkin integro-differential equations describing the process of heat propagation in media with memory. The sums of decreasing exponents or sums of Rabotnov functions with positive coefficients can be considered in particular as the kernels of integral operators, which are widely used in the theory of viscoelasticity and heat propagation theory.
Keywords
вольтерровы интегро-дифференциальные уравнения линейные дифференциальные уравнения в гильбертовых пространствах полугруппы
Date of publication
01.09.2023
Year of publication
2023
Number of purchasers
0
Views
44

References

  1. 1. Kopachevsky N.D., Krein S.G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Nonself-adjoint Problems for Viscous Fluids // Operator Theory: Advances and Applications (Birkhauser Verlag, Basel/Switzerland). 2003. V. 146. 444 p.
  2. 2. Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with memory.Theory and applications. New-York–Dordrecht–Heidelberg–London, Springer, 2012. 576 p.
  3. 3. Локшин А.А., Суворова Ю.В. Математическая теория распространения волн в средах с памятью. М.: Изд-во МГУ, 1982. 152 с.
  4. 4. Gurtin M.E., Pipkin A.C. General theory of heat conduction with finite wave speed // Arch. Rat. Mech. Anal. 1968. V. 31. P. 113–126.
  5. 5. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М.: Мир, 1984.
  6. 6. Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: “Наука”, 1977. 384 с.
  7. 7. Shamaev A.S., Shumilova V.V. Spectrum of one-dimensional eigenoscillations of a medium consisting of viscoelastic material with memory and incompressible viscous fluid // Journal of Mathematical Sciences. 2021. V. 257. № 5. P. 732–742.
  8. 8. Vlasov V.V., Rautian N.A. Correct solvability and representation of solutions of Volterra integrodifferential equations with fractional exponential kernels // Doklady Mathematics. 2019. V. 100. № 2. P. 467–471.
  9. 9. Rautian N.A. Semigroups Generated by Volterra Integro-Differential Equations // Differential Equations. 2020. V. 56. № 9. P. 1193–1211.
  10. 10. Rautian N.A. Exponential stability of semigroups generated by volterra integro-differential equations // Ufa Mathematical Journal. 2021. V. 13. № 4. P. 65–81.
  11. 11. Skubachevskii A.L. Boundary-value problems for elliptic functional-differential equations and their applications // Russian Mathematical Surveys. 2016. V. 71. № 5. P. 801–906.
  12. 12. Kato T. Perturbation theory for linear operators. Springer, 1966.
  13. 13. Крейн С.Г. Линейные дифференциальные уравнения в банаховых пространствах. М.: “Наука”, 1967. 464 с.
  14. 14. Engel K.J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. Springer-Verlag, New York, 2000. 586 p.
  15. 15. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М. “Наука”, 1989.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library