- Код статьи
- 10.31857/S2686954323600180-1
- DOI
- 10.31857/S2686954323600180
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 513 / Номер выпуска 1
- Страницы
- 9-14
- Аннотация
- В работе рассматривается задача для комплексных уравнений Гинзбурга–Ландау в среде с локально периодическими мелкими препятствиями. При этом предполагается, что поверхность препятствий может иметь разные коэффициенты проводимости. Доказано, что траекторные аттракторы этой системы стремятся в определенной слабой топологии к траекторным аттракторам задачи для усредненных уравнений Гинзбурга–Ландау с дополнительным потенциалом (в критическом случае), без дополнительного потенциала (в субкритическом случае) в среде без препятствий или просто исчезают (в суперкритическом случае).
- Ключевые слова
- аттракторы усреднение уравнения Гинзбурга–Ландау нелинейные уравнения слабая сходимость перфорированная область быстро осциллирующие члены
- Дата публикации
- 01.09.2023
- Год выхода
- 2023
- Всего подписок
- 0
- Всего просмотров
- 39
Библиография
- 1. Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. Strong Convergence of Trajectory Attractors for Reaction–Diffusion Systems with Random Rapidly Oscillating Terms // Communications on Pure and Applied Analysis (CPAA). 2020. V. 19. № 5. P. 2419–2443.
- 2. Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. “Strange Term” in Homogenization of Attractors of Reaction–Diffusion Equation in Perforated Domain // Chaos, Solitons & Fractals. 2020. V. 140. Art. No 110208.
- 3. Бекмаганбетов К.А., Толеубай А.М., Чечкин Г.А. Об аттракторах системы уравнений Навье–Стокса в двумерной пористой среде // Проблемы математического анализа. 2022. Т. 115. С. 15–28.
- 4. Chechkin G.A., Chepyzhov V.V., Pankratov L.S. Homogenization of Trajectory Attractors of Ginzburg–Landau equations with Randomly Oscillating Terms // Discrete and Continuous Dynamical Systems. Series B (DCDS-B). 2018. V. 23. № 3. P. 1133–1154.
- 5. Бекмаганбетов К.А., Чепыжов В.В., Чечкин Г.А. Сильная сходимость аттракторов системы реакции–диффузии с быстро осциллирующими членами в ортотропной пористой среде // Известия РАН. Серия математическая. 2022. Т. 86. № 6. С. 47–78.
- 6. Бабин А.В., Вишик М.И. Аттракторы эволюционных уравнений. М.: Наука, 1989.
- 7. Chepyzhov V.V., Vishik M.I. Attractors for equations of mathematical physics. Providence (RI): Amer. Math. Soc., 2002.
- 8. Lions J.-L. Quelques méthodes de résolutions des problèmes aux limites non linкires. Paris: Dunod, Gauthier-Villars, 1969.
- 9. Temam R. Infinite-dimensional dynamical systems in mechanics and physics. Applied Mathematics Series. V. 68. New York (NY): Springer-Verlag, 1988.
- 10. Chepyzhov V.V., Vishik M.I. Evolution equations and their trajectory attractors // J. Math. Pures Appl. 1997. V. 76. № 10. P. 913–964.
- 11. Mielke A. The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors // Nonlinearity. 1997. V. 10. P. 199–222.
- 12. Лионс Ж.-Л., Мадженес Е. Неоднородные граничные задачи и их приложения. М.: Мир, 1971.
- 13. Жиков В.В. Об усреднении в перфорированных случайных областях общего вида // Матем. заметки. 1993. Т. 53. № 1. С. 41–58.
- 14. Conca C. On the application of the homogenization theory to a class of problems arising in fluid mechanics. // J. Math. Pures Appl. 1985. (9) 64. № 1. P. 31–75.
- 15. Беляев А.Г., Пятницкий А.Л., Чечкин Г.А. Асимптотическое поведение решения краевой задачи в перфорированной области с осциллирующей границей // Сиб. матем. журн. 1998. Т. 39. № 4. С. 730–754.