- PII
- 10.31857/S2686954323600167-1
- DOI
- 10.31857/S2686954323600167
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 514 / Issue number 1
- Pages
- 12-19
- Abstract
- A dynamical system with constraints in the form of linear differential inequalities is considered. It is proved that in the general case, in the presence of such connections, the motion is shockless. The possibility of realizing such bonds by viscous friction forces is shown. An example of a nonholonomic system is given, for which, using numerical simulation, it is shown how, with an increase in the degree of anisotropy, the transition from a system with anisotropic viscous friction to a system with one-sided differential constraints occurs.
- Keywords
- неголономные системы односторонние дифференциальные связи анизотропное вязкое трение
- Date of publication
- 01.01.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 45
References
- 1. Аппель П. Теоретическая механика. т. 2. М., Физматгиз, 1960. 487 с.
- 2. Жуковский Н.Е. Теоретическая механика. М., Л., Гостехиздат, 1952. С. 812.
- 3. Березинская С.Н., Кугушев Е.И., Сорокина О.В. О движении механических систем с односторонними связями. Вестник московского университета, сер. 1, математика, механика. 2005. Т. 3. С. 18–24.
- 4. Kozlov V.V. On the dynamics of systems with one-sided non-integrable constraints, Theor. Appl. Mech. 2019. T. 46. Bып. 1. C. 1–14.
- 5. Kozlov V.V. Integral Analogue of the Gauss Principle University of Nis, The scientific journal Facta Universitatis, Series: Mechanics, Automatic Control and Robotics. 2000. V. 2. № 10. P. 1055–1060.
- 6. Kozlov V.V. Gauss Principle and Realization of Constraints, Regul. Chaotic Dyn. 2008. V. 13. № 5. P. 431–434.
- 7. Иосида К. Функциональный анализ. М., Мир, 1967. С. 624.