RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

Связность локусов Прима в роде 5

PII
10.31857/S2686954323600155-1
DOI
10.31857/S2686954323600155
Publication type
Status
Published
Authors
Volume/ Edition
Volume 514 / Issue number 1
Pages
74-78
Abstract
Пространство модулей голоморфных дифференциалов на кривых рода g допускает естественное действие группы \(G{{L}_{2}}(\mathbb{R})\). Изучение орбит этого действия и их замыканий привлекло интерес широкого круга исследователей в последние несколько десятилетий. В 2000-x годах К.~МакМаллен описал бесконечное семейство орбифолдов, являющихся замыканиями таких орбит в пространстве голоморфных дифференциалов на кривых рода 2. В пространствах голоморфных дифференциалов на кривых старших родов известными примерами орбифолдов, представляющих собой объединения замыканий орбит действия группы \(G{{L}_{2}}(\mathbb{R})\) являются локусы Прима. Они непусты для поверхностей рода не выше 5. В настоящей работе приведены первые нетривиальные вычисления числа компонент связности в локусах Прима для поверхностей старшего возможного рода.
Keywords
Date of publication
01.01.2023
Year of publication
2023
Number of purchasers
0
Views
38

References

  1. 1. Douady A., Hubbard J. On the density of strebel differentials. Inventiones Mathematicae. 1975. V. 30. № 06. P. 175–179.
  2. 2. Eskin A., Kontsevich M., Zorich A. Sum of lyapunov exponents of the hodge bundle with respect to the teichmüller geodesic flow. Publications mathématiques. 2011. V. 120. № 12. P. 207–333.
  3. 3. Lanneau E., Nguyen D. Complete periodicity of prym eigenforms. Annales Scientifiques de l'École Normale Supérieure. 2013. V. 49. № 01. P. 87–130.
  4. 4. Lanneau E., Nguyen D. Teichmüller curves generated by weierstrass prym eigenforms in genus three and genus four. Journal of Topology. 2014. V. 7. P. 475–522.
  5. 5. Lanneau E., Nguyen D. -orbits in prym eigenform loci. Geometry and Topology. 2016. V. 20. P. 1359–1426.
  6. 6. Lanneau E., Nguyen D. Weierstrass prym eigenforms in genus four. Journal of The Institute of Mathematics of Jussieu. 2018. V. 19. P. 2045–2085.
  7. 7. Eskin A., Masur H., Zorich A. Moduli spaces of abelian differentials: the principal boundary, counting problems, and the siegel-veech constants. Publications Mathématiques de l’Institut des Hautes Études Scientifiques. 2002. V. 97. P. 61–179.
  8. 8. Masur H., Tabachnikov S. Rational billiards and flat structures. Handbook of Dynamical Systems. 2002. V. 1. № 01. P. 1015–1089.
  9. 9. McMullen C. Teichmüller curves in genus two: discriminant and spin. Mathematische Annalen. 2005. V. 333. P. 87–130.
  10. 10. McMullen C. Prym varieties and teichmüller curves. Duke Mathematical Journal. 2006. V. 133. P. 569–590.
  11. 11. Eskin A., Mirzakhani M., Mohammadi A. Isolation, equidistribution, and orbit closures for the action on moduli space. Annals of Mathematics. 2015. V. 182. P. 673–721.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library