RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ON ONE APPROACH TO THE ASSESSMENT OF A TRIANGULAR ELEMENT DEGENERATION IN A TRIANGULATION

PII
10.31857/S2686954323600088-1
DOI
10.31857/S2686954323600088
Publication type
Status
Published
Authors
Volume/ Edition
Volume 510 / Issue number 1
Pages
52-56
Abstract
A quantitative estimate of a triangular element quality is proposed - the triangle degeneration index. To apply this estimate, the simplest model triangulation is constructed, in which the coordinates of the nodes are formed as the sum of the corresponding coordinates of the nodes of some given regular grid and random increments to them. For different values of the parameters, the empirical distribution function of the triangle degeneration index is calculated, which is considered as a quantitative characteristic of the quality of triangular elements in the constructed triangulation.
Keywords
регулярная сетка случайный вектор триангуляция индекс вырождения эмпирическая функция распределения
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Делоне Б.Н. О пустоте сферы // Изв. АН СССР. ОМЕН. 1934. № 4. С. 793–800.
  2. 2. Gallagher R.H. Finite Element Analysis: Fundamentals. Berlin, Heidelberg: Springer-Verlag 1976. 396 c.
  3. 3. Fletcher C.A.J. Computational Galerkin methods. NY, Berlin, Heidelberg, Tokio: Springer-Verlag, 1984. 309 c.
  4. 4. Preparata F.P., Shamos M.I. Computational Geometry: An introduction. NY, Berlin, Heidelberg, Tokio: Springer-Verlag, 1985. 400 c.
  5. 5. Edelsbrunner H., Seidel R. Voronoi diagrams and arrangements // Discrete and Computational Geometry. 1986. V. 8. № 1. C. 25–44. https://doi.org/10.1007/BF02187681
  6. 6. Lee D.T., Lin A.K. Generalized Delaunay triangulation for planar graphs // Discrete and Computational Geometry. 1986. № 1. C. 201–217. https://doi.org/10.1007/BF02187695
  7. 7. Paul Chew L. Constrained Delaunay triangulations // Algorithmica. 1989. V. 4. № 1. C. 97–108. https://doi.org/10.1007/BF01553881
  8. 8. Скворцов А.В., Мирза Н.С. Алгоритмы построения и анализа триангуляции. Томск: Изд-во Томского университета, 2006. 167 с.
  9. 9. Pournin L., Liebling Th.M. Constrained paths in the flip-graph of regular triangulations // Computational Geometry. 2007. V. 37. C. 134–140. https://doi.org/10.1016/j.comgeo.2006.07.001
  10. 10. Hjelle Ø., Dæhlen M. Triangulations and Applications. Berlin: Heidelberg: Springer, 2006. 240 c.
  11. 11. De Loera J.A., Rambau J., Santos F. Triangulations: Structures for Algorithms and Applications (Algorithms and Computation in Mathematics, Vol. 25) 1st Edition. Berlin, Heidelberg, Springer, 2010, 548 c.
  12. 12. Соболь И.М. Численные методы Монте-Карло. Москва: Наука, 1973. 312 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library