RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ON INTERPRETATIONS OF PRESBURGER ARITHMETIC IN BÜCHI ARITHMETICS

PII
10.31857/S2686954322600641-1
DOI
10.31857/S2686954322600641
Publication type
Status
Published
Authors
Volume/ Edition
Volume 510 / Issue number 1
Pages
3-7
Abstract
Büchi arithmetics BAn, \(n \geqslant 2\), are extensions of Presburger arithmetic with an unary functional symbol \({{V}_{n}}(x)\) denoting the largest power of n that divides x. Definability of a set in BAn is equivalent to its recognizability by a finite automaton receiving numbers in their n-ary expansion. We consider the interpretations of Presburger Arithmetic in the standard model of BAn and show that each such interpretation has an internal model isomorphic to the standard one. This answers a question by A. Visser on the interpretations of certain weak arithmetical theories in themselves.
Keywords
формальные арифметики интерпретации автоматные структуры автоматные абелевы группы
Date of publication
01.09.2023
Year of publication
2023
Number of purchasers
0
Views
42

References

  1. 1. Büchi J.R. Weak second-order arithmetic and finite automata // Mathematical Logic Quarterly. 1960. V. 6. № 1–6. P. 66–92. https://doi.org/10.1002/malq.19600060105
  2. 2. Bruyère V. Entiers et automates finis // Mémoire de fin d’études, Université de Mons (1985).
  3. 3. Bruyère V. et al. Logic and p-recognizable sets of integers // Bulletin of the Belgian Mathematical Society Simon Stevin. 1994. V. 1. № 2. P. 191–238. https://doi.org/10.36045/bbms/1103408547
  4. 4. Cobham A. On the base-dependence of sets of numbers recognizable by finite automata // Mathematical systems theory. 1969. V. 3. № 2. P. 186–192. https://doi.org/10.1007/BF01746527
  5. 5. Семёнов А.Л. Пресбургеровость предикатов, регулярных в двух системах счисления // Сибирский математический журнал. 1977. Т. 18. № 2. С. 403–418. https://doi.org/10.1007/BF00967164
  6. 6. Presburger M. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt // Comptes Rendus du I congrès de Mathématiciens des Pays Slaves 92–101, 1929.
  7. 7. Pakhomov F., Zapryagaev A. Multi-dimensional interpretations of Presburger arithmetic in itself // Journal of Logic and Computation. 2020. V. 30. № 8. P. 1681–1693. https://doi.org/10.1093/logcom/exaa050
  8. 8. Tarski A., Mostowski A., Robinson R.M. Undecidable theories. North-Holland, 1953. 98 p.
  9. 9. Braun G., Strüngmann L. Breaking up finite automata presentable torsion-free abelian groups // International Journal of Algebra and Computation. 2011. V. 21. № 08. P. 1463–1472. https://doi.org/10.1142/S0218196711006625
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library