RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

SUPPRESSION OF SPECKLE NOISE IN MEDICAL IMAGES VIA SEGMENTATION-GROUPING OF 3D OBJECTS USING SPARSE CONTOURLET REPRESENTATION

PII
10.31857/S2686954322600562-1
DOI
10.31857/S2686954322600562
Publication type
Status
Published
Authors
Volume/ Edition
Volume 509 / Issue number 1
Pages
94-100
Abstract
Novel filtering method in medical images (MRI and US) that are contaminated by noise consisting of mixture speckle and additive noise is designed in this paper. Proposed method consists of several stages: segmentation of image areas, grouping of similar 2D structures in accordance mutual information (MI) measure, homomorphic transformation, 3D filtering approach based on sparse representation in contourlet (CLT) space with posterior filtering in accordance with MI weights similar 2D structures, and final inverse homomorphic transformation. During numerous experiments, the developed method has confirmed their superiority in term of visual image quality via human visual perception as well as in better criteria values, such as PSNR, SSIM, EPI and alfa for different test MRI and US mages corrupted by speckle noise.
Keywords
ультразвуковые и магнитно-резонансные изображения суперпикельные методы сегментации фильтрация спекл шум группирование объектов голоморфное преобразование пиковое отношение сигнал/шум
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Кравченко В.Ф., Пономарев В.И., Пустовойт В.И., Аранда-Бохоргес Г. // Доклады РАН. Математика, информатика, процессы управления. 2021. Т. 499. № 2. С. 67–72.
  2. 2. Aranda-Bojorges G., Ponomaryov V., Reyes-Reyes R., Cruz-Ramos C., Sadovnychiy S. // IEEE Geosci. Rem. Sens. Lett. 2020. V. 19, art. 4018005. https://doi.org/10.1109/LGRS.2021.3108774
  3. 3. Reyes-Reyes R., Aranda-Bojorges G., Garcia-Salgado B., Ponomaryov V., Cruz-Ramos C., Sadovnychiy S. // Sensors. 2022. V. 22. 5113. https://doi.org/10.3390/s22145113
  4. 4. Kravchenko V., Perez H., Ponomaryov V. Adaptive Signal Processing of Multidimensional Signals with Applications. Moscow: Fizmatlit, 2009.
  5. 5. Dabov K., Foi A., Katkovnik V., Egiazarian K. // IEEE Trans. Image Process. 2007. V. 16. № 8. P. 2080–2095.
  6. 6. Santos C.A.N., Martins D.L.N., Mascarenhas N.D.A. // IEEE Trans. Image Process. 2017. V. 26. 2632–2643. https://doi.org/10.1109/TIP.2017.2685339
  7. 7. Sameera V.M.S., Sudhish N.G. // Sensing Imaging. 2017. V. 18. P. 1–28. https://doi.org/10.1007/s11220-017-0181-8
  8. 8. Jubairahmed L., Satheeskumaran S., Venkatesan C. // Clust. Comput. 2019. V. 22. P. 11237–11246.
  9. 9. Jaburalla M.Y., Lee H.N. // Appl. Sci. 2018. V. 8. 903. P. 1–17. https://doi.org/10.3390/app8060903
  10. 10. Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Süsstrunk S. // IEEE Trans. Pattern Anal. Mach. Intell. 2012. V. 34. P. 2274–2282.
  11. 11. Jensen J.A. // Med. Biol. Eng. Comput. 1996. V. 34. P. 351–352.
  12. 12. Wang Z., Bovik A. // IEEE Signal Process. Mag. 2009. V. 26. № 1. P. 98–117.
  13. 13. https://openfmri.org/dataset/ (accessed: June21, 2022).
  14. 14. http://splab.cz/en/download/databaze/ultrasound (accessed: June 19, 2022).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library