- Код статьи
- S3034504925040054-1
- DOI
- 10.7868/S3034504925040054
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 524 / Номер выпуска
- Страницы
- 34-39
- Аннотация
- Исследуются свойства фундаментального решения линейного вольтеррова интегро-дифференциального оператора, который представляет собой одномерный волновой линейный дифференциальный оператор с частными производными, возмущенный интегральным оператором вольтеровой свертки. Функция ядра интегрального оператора представляет собой сумму дробно-экспоненциальных функций (функций Работнова) с положительными коэффициентами. Для линейных вольтерровых интегро-дифференциальных операторов с частными производными второго порядка вводится понятие гиперболичности относительно конуса. Устанавливается, что гиперболичность относительно конуса эквивалентна локализации носителя фундаментального решения линейного вольтеррова интегро-дифференциального оператора второго порядка в сопряженном конусе. Устанавливается гиперболичность относительно конуса одномерного волнового интегро-дифференциального оператора с дробно-экспоненциальной функцией памяти.
- Ключевые слова
- линейные вольтеровы интегро-дифференциальные уравнения с частными производными преобразование Фурье–Лапласа гиперболичность дифференциальных и интегро-дифференциальных операторов дробно-экспоненциальная функция
- Дата публикации
- 27.11.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 7
Библиография
- 1. Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
- 2. Gurtin M.E., Pipkin A.C. General theory of heat conduction with finite wave speed // Arch. Rat. Mech. Anal. 1968. V. 31. P. 113–126.
- 3. Владимиров В.С. Обобщенные функции в математической физике. М.: Наука, 1979. 320 с.
- 4. Владимиров В.С. Уравнения математической физики. М.: Наука, 1988. 512 с.
- 5. Дрожжинов Ю.Н., Завьялов Б.И. Лекционные курсы НОЦ /Математический институт им. В.А. Стеклова. Вып. 5 Введение в теорию обобщенных функций. М.: МИАН, 2006. 164 с.
- 6. Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with memory. Theory and applications. Springer New-York–Dordrecht–Heidelberg–London, 2012. 576 p.
- 7. Kopachevsky N.D., Krein S.G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Nonself-adjoint Problems for Viscous Fluids // Operator Theory: Advances and Applications (Birkhauser Verlag, Basel/Switzerland). 2003. V. 146. 444 p.
- 8. Власов В.В. Раутиан Н.А. Спектральный анализ функционально-дифференциальных уравнений. М.: МАКС Пресс, 2016. 488 с.
- 9. Георгиевский Д.В. Модели теории вязкоупругости. М.: ЛЕНАНД, 2023. 144 с.
- 10. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. M.: Мир, 1984.
- 11. Skubachevskii A.L. Boundary-value problems for elliptic functional-differential equations and their applications // Russian Mathematical Surveys. 2016. V. 71. № 5. P. 801–906.
- 12. Rautian N.A. On the Properties of Semigroups Generated by Volterra Integro-Differential Equations with Kernels Representable by Stieltjes Integrals // Differential Equations. 2021. V. 57. № 9. P. 1231–1248.
- 13. Vlasov V.V., Rautian N.A. Well-Posed Solvability of Volterra Integro-Differential Equations in Hilbert Spaces // Differential Equations. 2022. V. 58. № 10. P. 1410–1426.
- 14. Rautian N.A., Vlasov V.V. Spectral Analysis of the Generators for Semigroups Associated with Volterra Integro-Differential Equations // Lobachevskii Journal of Mathematics. 2023. V. 44. № 3. P. 926–935.