Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ОБРАЗОВАНИЕ СТОХАСТИЧЕСКОГО ПОВЕДЕНИЯ И ВЗРЫВНЫХ РЕШЕНИЙ В БЕСКОНЕЧНО УДАЛЕННОМ ФАЗОВОМ ПРОСТРАНСТВЕ ДИНАМИЧЕСКИХ СИСТЕМ

Код статьи
S3034504925020098-1
DOI
10.7868/S3034504925020098
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 522 / Номер выпуска 1
Страницы
56-61
Аннотация
В статье рассматриваются условия, при которых происходит режим обострения фазовых переменных, стремящихся к кругу Пуанкаре за конечное время, и при этом исследуются системы дифференциальных уравнений, в которых наряду со взрывными решениями имеет место в некоторых случаях стохастическое поведение траектории. Рассматривается роль сепаратрис и сепаратрисных циклов до возмущения и при неавтономном малом периодическом возмущении правых частей исходных динамических систем, в фазовых пространстве которых возникают гомоклинические структуры, приводящие к стохастическому поведению траектории. Также рассматриваются различные случаи образования солитонов при бифуркациях траекторий систем.
Ключевые слова
преобразование Пуанкаре режимы обострений локализация (стабилизация) модели самоорганизации солитоны
Дата публикации
01.04.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
56

Библиография

  1. 1. Режимы с обострением: эволюция идеи. Под ред. Г.Г. Малинецкого. М.: ФИЗМАТЛИТ, 2006. 312 с.
  2. 2. Samarskii A.A., Galaktionov V.A., Kurdyumov S.P. and Mikhailov A.P., Blow-up in Quasilinear Parabolic Equations. Berlin: Gruyter, 1995. 542 c.
  3. 3. Радкевич Е.В., Яковлев Н.Н., Васильева О.А. Bопросы математического моделирования вибрационного горения // Доклады РАН. 2020. Т. 495. С. 69–73. https://doi.org/10.31857/S2686954320060144
  4. 4. Радкевич Е.В., Васильева О.А., Сидоров М.И., Ставровский М.Е. Тепловой взрыв как резонанс процесса горения // Доклады РАН. 2023. Т. 509. № 1. С. 60–64. DOI:10.31857/52686954323700108
  5. 5. Soleev A., Rozet I., Mukhtarov Y. Stochastic Regimes in Some Autowave and Oscillator Systems with Periodic Perturbations // AIP Conf. Proc. 3147, 020011. 2024. P. 94–98. doi.org/10.1063/5.0210942
  6. 6. Soleyev A.S., Rozet I.G., Muxtarov Y. Research of ecological and medical models using bifurcation parameters methods in finite difference discrete systems // Problems of Computational and Applied Mathematics. 2024. 4/1(59). P. 9–14.
  7. 7. Soleev A. Complicated Bifurcations of Periodic Solutions in some System of ODE // Canadian Mathem. Bulletin. 1996. V. 39 (3). P. 360–366.
  8. 8. Брюно А.Д., Солеев А. Бифуркации решений в обратимой системе ОДУ // Доклады РАН. 1995. Т. 52. № 3. С. 419–421.
  9. 9. Еругин Н.П. Книга для чтения по общему курсу дифференциальных уравнений. Минск: Наука и техника, 1979. 744 c.
  10. 10. Солеев А.С., Розет И.Г., Мухтаров Я. Режимы стохастики в некоторых моделях теплопроводности и самоорганизации при периодических возмущениях // Научный вестник Сам ГУ. Серия точных и естественных наук. 2024. № 1 (143/1). С. 4–11.
  11. 11. Кузенков О.А., Рябова Е.А., Круподерова К.Р. Математические модели процессов отбора. Нижний Новгород: ННГУ им. Н.И. Лобачевского, 2012. 133 c.
  12. 12. Марчук Г.И. Избранные труды. Том 4. Математическое моделирование в иммунологии и медицине. Москва: РАН, «Институт Вычислительной Математики», 2018. 239 с.
  13. 13. Куклес И.С. О методе Фроммера исследования особой точки // ДАН СССР. 1957. Т. 117. № 3. C. 367–370.
  14. 14. Артыков А.Р., Розет И.Г., Рабинков Г.А. Подвижные особенности решений, траектории которых в окрестности бесконечности являются спиралями // Дифференциальные уравнения. 1980. Т. 16. № 8. С. 1355–1360.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека