RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

MODAL LOGICS WITH THE INTERSECTION MODALITY

PII
S3034504925010139-1
DOI
10.7868/S3034504925010139
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
107-123
Abstract
We give a simple proof of a recently obtained in [12] result on the completeness of modal logics with the modality that corresponds to the intersection of accessibility relations in a Kripke model. In epistemic logic, this is the so-called distributed knowledge operator. We prove completeness for the logics in the modal languages of two types: one has the modalities □1,...,□n for the relations R1,...,Rn that satisfy a unimodal logic L, and the modality □n+1 for the intersection Rn+1=R1 ∩...∩ Rn; the other language has the modalities □i (i ∈ Σ) for the relations Ri that satisfy the logic L, and, for every nonempty subset of indices I ⊆ Σ, the modality □I for the intersection ∩i∈I Ri. While in [12] the completeness is proved only for the logics over K, KD, KT, K4, S4, and S5, here we give a "uniform" construction that enables us to obtain completeness for the logics with intersection over the 15 so-called "traditional" modal logics KΛ, for Λ ⊆ {D, T, B, 4, 5}. The proof method is based on unravelling of a frame and then taking the Horn closure of the resulting frame.
Keywords
модальная логика модальность пересечения хорново замыкание полнота по Крипке
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
72

References

  1. 1. Chagrov A., Zakharyaschev M. Modal Logic. Clarendon Press, 1997. (Oxford logic guides). ISBN 9780198537793.
  2. 2. Gabbay D., Shehtman V., Skvortsov D. Quantification in nonclassical logic, volume 1. Elsevier, 2009. ISBN 9780444520128.
  3. 3. Goldblatt R. Logics of Time and Computation. Center for the Study of Language, Information, 1987. (CSLI lecture notes). ISBN 9780937073124.
  4. 4. Goranko V., Passy S. Using the Universal Modality: Gains and Questions // Journal of Logic and Computation. 1992. V2, N.4. P. 5—30.
  5. 5. Handbook of Epistemic Logic / ed. by H. van Ditmarsch [et al.]. College Publications, 2015. ISBN 978-1-84890-158-2.
  6. 6. Kikot S., Shapirovsky I., Zolin E. Modal Logics with Transitive Closure: Completeness, Decidability, Filtration In Advances in Modal Logic, v.13, p. 369—388, College Publications, 2020.
  7. 7. Kozen D., Parikh R. An elementary proof of the completeness of PDL // Theoretical Computer Science. 1981. V 14, N. 1. P. 113-118.
  8. 8. Modal Logic / Stanford Encyclopedia of Philosophy. 2018. URL: https://plato.stanford.edu/entries/logic-modal/.
  9. 9. Segerberg K. A completeness theorem in the modal logic of programs // Banach Center Publications. 1982. V. 9, N. 1. P. 31-46.
  10. 10. Segerberg K. A Model Existence Theorem in Infinitary Propositional Modal Logic // Journal of Philosophical Logic. 1994. V. 23, N. 4. P. 337-367.
  11. 11. Sundholm G. A Completeness Proof for an Infinitary Tense-Logic // Theoria. 1977. V. 43, N. 1. P. 47-51.
  12. 12. Wang J.N., Agotnes T. Simpler completeness proofs for modal logics with intersection. ArXiv:2004.02120 [cs.LO].
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library