RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

COMPANION MATRIX FOR SUPERPOSITION OF POLYNOMIALS AND ITS APPLICATION TO KNOT THEORY

PII
S3034504925010096-1
DOI
10.7868/S3034504925010096
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
72-80
Abstract
The note provides a new formula for the companion matrix of the superposition of two polynomials over a commutative ring. The results obtained are used to provide a constructive proof of Plans’ theorem for two-bridge knots, which states that the first homology group of an odd-sheeted cyclic covering of a three-dimensional sphere branched over a given knot is the direct sum of two copies of some Abelian group. A similar result is also true for the homology of even-sheeted coverings factored by the reduced homology group of a two-sheeted covering. The structure of the above mentioned Abelian groups is described through Chebyshev polynomials of the second and fourth kind.
Keywords
нормальная форма Смита сопровождающая матрица узел группа гомологий разветленное накрытие
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
68

References

  1. 1. Bini D.A., Pan V.Y. Polynomial and Matrix Computations // Fundamental Algorithms. Birkhauser. Boston. MA. 1994. V. 1.
  2. 2. Davis P.J. Circulant Matrices. New York: AMS Chelsea Publishing. 1994.
  3. 3. Noferini V., Williams G. Matrices in companion rings, Smith forms, and the homology of 3-dimensional Brieskorn manifolds // J. Algebra. 2021. V 587. P. 1-19. https://doi.org/10.1016/j.jalgebra.2021.07.018
  4. 4. Plans A. Aportacion al estudio de los grupos de homologia de los recubrimientos ciclicos ramificados correspondiente a un nudo // Rev. R. Acad. Cienc. Exactas, Fis. Nat. Madr. 1953. V. 47. P. 161-193.
  5. 5. Del Val P., Weber C. Plans’ theorem for links // Topol. Appl. 1990. V. 34. P. 247-255. https://doi.org/10.1016/0166-8641 (90)90041-Y
  6. 6. Gordon C. McA. A short proof of a theorem of Plans on the homology of the branched cyclic coverings of a knot // Bull. Amer. Math. Soc. 1971. V. 168. P. 85-87. https://doi.org/10.1090/S0002-9904-1971-12611-3
  7. 7. Stevens W.H. On the Homology of Branched Cyclic Covers of Knots // LSU Historical Dissertations and Theses. 1996. DOI: 10.31390/gradschool_disstheses.6282
  8. 8. Vaserstein L.N., Wheland E. Commutators and Companion Matrices over Rings of Stable Rank 1 // Linear Algebra Appl. 1990. V. 142. P. 263-277. DOI: 10.1016/0024-3795(90)90270-M
  9. 9. Brand L. The companion matrix and its properties // Amer. Math. Monthly. 1964. V. 71. N. 6. P. 629-634. DOI: 10.1080/00029890.1964.11992294
  10. 10. Lancaster P., Tismenetsky M. The Theory of Matrices. Second Edition with Applications. San Diego: Academic press. 1985.
  11. 11. Mason J.C., Handscomb D.C. Chebyshev Polynomials. Boca Raton: CRC Press, 2003.
  12. 12. Nakanishi Y., Suketa M. Alexander polynomials of two-bridge knots // J. Austral. Math. Soc. (Series A). 1996. V. 60. P. 334-342. https://doi.org/10.1017/S1446788700037848
  13. 13. Murasugi K. On the Alexander polynomial of the alternating knot // Osaka J. Math. 1958. V. 10. P. 181-189.
  14. 14. Hartley R.I. On two-bridged knot polynomials // J. Austral. Math. Soc. (Series A). 1979. V. 28. P. 241-249. https://doi.org/10.1017/S1446788700015743
  15. 15. Schubert H. Knoten mit zwei Bracken // Math. Z. 1956. V. 65. V. P. 133-170.
  16. 16. Cattabriga A., Mulazzani M. Strongly-cyclic branched coverings of (1, 1)-knots and cyclic presentations of groups // Math. Proc. Cambridge Phil. Soc. 2003. V. 135. N. 1. P. 137-146. https://doi.org/10.1017/S0305004103006686
  17. 17. Fox R.H. Free Differential Calculus III. Subgroups // Ann. Math. 1956. V. 64 N. 3. P. 407-419.
  18. 18. Mednykh I.A. Homology group of branched cyclic covering over a 2-bridge knot of genus two. Preprint. 2021. arXiv:2111.04292 [math.CO].
  19. 19. Seifert H. Uber das Geschlecht von Knoten // Math. Ann. 1934. V. 110. P. 571-592.
  20. 20. Kutateladze S.S. Fundamentals of functional analysis. Netherlands: Springer Science and Business Media, 2013.
  21. 21. Reidemeister K. Knotentheorie. New York: Chelsea Pub. Co., NewYork, 1948.
  22. 22. Raymond Lickorish W.B. An Introduction to Knot Theory. New York: Springer, 1997.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library