Президиум РАНДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ДИНАМИКА СИСТЕМЫ ПРИ НАЛИЧИИ ИНВАРИАНТНЫХ СООТНОШЕНИЙ

Код статьи
S3034504925010084-1
DOI
10.7868/S3034504925010084
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 521 / Номер выпуска 1
Страницы
63-71
Аннотация
Обсуждается возможность существования инвариантной меры с гладкой плотностью в двух случаях, относящихся к инвариантным множествам, — на уровнях частных интегралов и на совместном инвариантном уровне двух или нескольких функций. Приводится вариант теоремы Якоби о последнем множителе, который является дополнением к аналогичным утверждениям С.А. Чаплыгина и В.В. Козлова. Исследуются условия, когда инвариантные множества представляют собой двухмерный тор, на котором определена инвариантная мера с гладкой плотностью, поэтому применима теорема А.Н. Колмогорова, в силу которой движение после соответствующей замены является условно-периодическим.
Ключевые слова
инвариантная мера инвариантные множества частные первые интегралы интегрируемость в квадратурах
Дата публикации
03.02.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
73

Библиография

  1. 1. Козлов В.В. О существовании интегрального инварианта гладких динамических систем. Прикладная математика и механика, 1987, том 51, номер 4, с. 538—545.
  2. 2. Голубев В.В. Лекции по интегрированию уравнений движения тяжелого твердого тела около неподвижной точки. М.: Гостехиздат, 1953. 288 с.
  3. 3. Горр Г.В. Инвариантные соотношения уравнений динамики твердого тела. Москва— Ижевск: Институт компьютерных исследований, 2017. 424 с.
  4. 4. Козлов В.В. О некоторых свойствах частных интегралов канонических уравнений. Вестник МГУ, сер. мат.-мех., 1973, 1, с. 81—84.
  5. 5. Козлов В.В. К теории интегрирования уравнений неголономной механики // Успехи механики, 8:3, 1985, — 85—107.
  6. 6. Чаплыгин С.А. О принципе последнего множителя. Математический сборник 1900, том 21, номер 3, 479—489, в кн. Чаплыгин С.А. Собрание сочинений. Т. 1, М.—Л.: Гостехиздат, 1948.
  7. 7. Болотин С.В., Карапетян А.В., Кугушев Е.И., Трещев Д.В. Теоретическая механика. М.: Издательский центр «Академия», 2010. 434 с.
  8. 8. Колмогоров А.Н. О динамических системах с интегральным инвариантом на торе. ДАН СССР, 1953, том 93, номер 5, с. 763-766.
  9. 9. Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. Методы и приложения, том 2: Геометрия и топология многообразий. М.: Эдиториал УРСС, 2001. 296 с.
  10. 10. Кугушев Е.И., Сальникова Т.В. Обобщение теоремы Якоби о последнем множителе. Докл. РАН. Матем., информ., проц. упр., 2024, том 517, номер 3.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека