RAS PresidiumДоклады Российской академии наук. Математика, информатика, процессы управления Doklady Mathematics

  • ISSN (Print) 2686-9543
  • ISSN (Online) 3034-5049

ON CERTAIN SPANNING SUBGRAPHS OF RANDOM GRAPHS

PII
S2686954325030112-1
DOI
10.31857/S2686954325030112
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 523 / Issue number 1
Pages
66-70
Abstract
Presented by Academician of the RAS V. V. Kozlov. An improvement of Riordan’s result on the threshold probability of the occurrence of a spanning subgraph in a random graph is obtained for some classes of subgraphs, which, in particular, implies an improved bound for the maximum power of a Hamiltonian cycle in a random graph. Moreover, the exact asymptotics of the threshold probability for the occurrence of spanning subgraphs from a wide class of k-degenerate graphs is found.
Keywords
случайный граф остовный подграф гамильтонов цикл k-вырожденный граф
Date of publication
24.04.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Erdos P., Renyi A. On the evolution of random graphs // Magyar Tud. Akad. Mat. Kutato Int. Kozl. 1960. V. 5. P. 17–61.
  2. 2. Bollobas B., Thomason A.G. Threshold functions // Combinatorica. 1987. V. 7. P. 35–38. https://doi.org/10.1007/BF02579198
  3. 3. Friedgut E. Sharp thresholds of graph properties, and the k-sat problem // Journal of the american mathematical society. V. 12. № 4. P. 1017–1054.
  4. 4. Friedgut E. Hunting for sharp thresholds // Random Structures & Algorithms. 2005. V. 26. № 1–2. P. 37–51.
  5. 5. Park J., Pham H. A proof of the Kahn–Kalai conjecture // J. Amer. Math. Soc. 2024. V. 37. P. 235–243. https://doi.org/10.1090/jams/1028
  6. 6. Kahn J., Kalai G., Thresholds and Expectation Thresholds. Combinatorics, Probability and Computing. 2007. V. 16. № 3. P. 495–502. https://doi.org/10.1017/S0963548307008474
  7. 7. Riordan O. Spanning subgraphs of random graphs // Combinatorics, Probability & Computing. 2000. V. 9. P. 125–148.
  8. 8. Komlos J., Szemeredi E. Hamilton cycles in random graphs, In: A. Hajnal, R. Rado, V. T. Sos, eds., Infinite and Finite Sets, Colloq. Math. Soc. Janos Bolyai 10 (North-Holland, Amsterdam), 1973.
  9. 9. Posa L., Hamiltonian circuits in random graphs // Discrete Mathematics. 1976. V. 14. P. 359–364.
  10. 10. Kuhn D., Osthus D. On Posa’s conjecture for random graphs // SIAM Journal Discrete Mathematics. 2012. V. 26. P. 1440–1457.
  11. 11. Nenadov R., Skoric N. Powers of Hamilton cycles in random graphs and tight Hamilton cycles in random hypergraphs // Random Structures Algorithms. 2019. V. 54. P. 187–208.
  12. 12. Fischer M., Skoric N., Steger A., Trujic M. Triangle resilience of the square of a Hamilton cycle in random graphs // Journal of Combinatorial Theory, Ser. B. 2022. V. 152. P. 171–220.
  13. 13. Montgomery R. Topics in random graphs, Lecture notes (2018).
  14. 14. Kahn J., Narayanan B., Park J. The threshold for the square of a Hamilton cycle // Proc. Amer. Math. Soc. 2021. V. 149 P. 3201–3208. https://doi.org/10.1090/proc/15419
  15. 15. Frankston K.,Kahn J., Narayanan B., Park J. Thresholds versus fractional expectation-thresholds // Annals of Mathematics. 2021. V. 194. № 2. P. 475–495.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library