Задачи анализа и визуализации динамики вязкой несжимаемой жидкости в условиях сложной геометрии течений на основе традиционных сеточных и проекционных методов связаны с существенными требованиями к производительности ЭВМ для достижения поставленных целей. Для снижения вычислительной нагрузки при решении этого класса задач могут быть использованы алгоритмы построения искусственных нейронных сетей (ИНС), использующие в качестве обучающих наборов точные решения системы уравнений Навье–Стокса на заданном множестве пространственных областей. Реализована ИНС для построения течения в областях, являющихся алгебраическими комплексами, составленными из обучающих наборов стандартных осесимметричных областей (цилиндров, шаров и т.п.). Для снижения объёма вычислений в случае 3-D задач используются инвариантные многообразия течений, имеющие меньшую размерность. Это позволяет выявить детальную структуру решений. Установлено, что типичными инвариантными областями таких течений являются фигуры вращения, в частности, гомеоморфные тору, образующие структуру топологического расслоения, например, в шаре, цилиндре и в общих комплексах, составленных из таких фигур. Исследованы структуры течений, получающихся аппроксимацией простейшими 3-D вихревыми нестационарными потоками. Выделены классы точных решений системы Навье–Стокса для несжимаемой жидкости в ограниченных областях пространства на основе суперпозиции вышеуказанных топологических расслоений. Сравнительные вычислительные эксперименты указывают на значительное ускорение выполнения вычислительной работы в случае использования предложенного класса ИНС, что позволяет использовать вычислительную технику с низкой производительностью.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation