Изучение функций распределения (по площадям, периметрам) для разбиения плоскости (пространства) случайным полем прямых (гиперплоскостей) а также для мозаик Вороного представляет собой классическую задачу стохастической геометрии. Начиная с 1972 г. [1] по настоящее время исследовались моменты для таких распределений. Мы даем полное решение этих задач для плоскости, а также для мозаик Вороного. Решаются следующие задачи. На плоскости задан случайный набор прямых, все сдвиги равновероятны, а закон распределения имеет вид F(φ). Каково распределение частей разбиения по площадям (периметрам)? На плоскости отмечен случайный набор точек. С каждой точкой A связана “область притяжения”, представляющая собой набор точек на плоскости, к которым точка A является ближайшей из множества отмеченных. Идея состоит в интерпретации случайного многоугольника как эволюции отрезка на движущейся плоскости и построения кинетических уравнений. При этом достаточно учитывать ограниченное число параметров: пройденную площадь (периметр), длину отрезка, углы при его концах. Мы покажем, как свести эти уравнения к уравнению Риккати, используя преобразование Лапласа.
Известно, что если на плоскости имеется конечный набор выпуклых фигур, внутренности которых не пересекаются, то среди этих фигур имеется хотя бы одна крайняя – такая, которую можно непрерывно передвинуть “на бесконечность” (за пределы большого круга, содержащего остальные фигуры), оставляя все остальные фигуры неподвижными и не пересекая их внутренности в процессе движения. Было обнаружено, что в пространстве размерности три имеет место феномен самозаклинивающихся структур. Самозаклинивающаяся структура – это такой конечный (или бесконечный) набор выпуклых тел с непересекающимися внутренностями, что если зафиксировать все, кроме любого одного, то это тело нельзя “унести на бесконечность”. С давних пор имеющиеся структуры базируются на рассмотрении слоев из кубов, тетраэдров и октаэдров, а также их вариаций. В данной работе мы рассматриваем принципиально новый феномен двумерных самозаклинивающихся структур: набор двумерных многоугольников в трехмерном пространстве, где каждую многоугольную плитку нельзя унести на бесконечность. Из тонких плиток собираются самозаклиненные декаэдры, из которых, в свою очередь, собираются структуры второго порядка. В частности, приводится конструкция колонны, составленной из декаэдров, устойчивой при фиксации двух крайних декаэдров, а не всей границы слоя, как в структурах, исследованных ранее.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation