Пространство модулей голоморфных дифференциалов на кривых рода g допускает естественное действие группы \(G{{L}_{2}}(\mathbb{R})\). Изучение орбит этого действия и их замыканий привлекло интерес широкого круга исследователей в последние несколько десятилетий. В 2000-x годах К.~МакМаллен описал бесконечное семейство орбифолдов, являющихся замыканиями таких орбит в пространстве голоморфных дифференциалов на кривых рода 2. В пространствах голоморфных дифференциалов на кривых старших родов известными примерами орбифолдов, представляющих собой объединения замыканий орбит действия группы \(G{{L}_{2}}(\mathbb{R})\) являются локусы Прима. Они непусты для поверхностей рода не выше 5. В настоящей работе приведены первые нетривиальные вычисления числа компонент связности в локусах Прима для поверхностей старшего возможного рода.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation