В статье рассматриваются различные модификации нелинейного уравнения Бюргерса с малым параметром и вырожденного в решении вида \(F(u,\varepsilon ) = {{u}_{t}} - {{u}_{{xx}}} + u{{u}_{x}} + \varepsilon {{u}^{2}} - f(x,t) = 0,\) (1) где \(F:\Omega \to C([0,\pi ] \times [0,T])\), \(T > 0\), \(\Omega = {{C}^{2}}([0,\pi ] \times [0,T]\,)\,\mathbb{R}\) и \(u(0,t) = u(\pi ,t) = 0\), \(u(x,0) = \varphi (x)\), \(f(x,t) \in C([0,\pi ] \times [0,T])\), \(\varphi (x) \in C[0,\pi ]\). Нас будет интересовать наиболее важный в приложениях случай малого параметра ε с осциллирующими начальными условиями вида \(\varphi (x) = k\sin x\), где k –некоторая, вообще говоря, зависящая от ε, константа, и изучать вопрос существования решения в окрестности тривиального \((u{\kern 1pt} *,\varepsilon {\kern 1pt} *) = (0,0)\), которому соответствует \(k = k{\kern 1pt} * = 0\) и при каких начальных условиях на значения k возможно построение аналитического приближения этого решения при малых ε. Мы будем искать решение в традиционном русле разделения переменных на подпространстве функций вида \(u(x,t) = v(t)u(x)\), где \(v(t) = c{{e}^{{ - t}}}\), \(u(x) \in {{\mathcal{C}}^{2}}([0,\pi ])\). В этом случае рассматриваемая задача является вырожденной в точке \((u{\kern 1pt} *,\varepsilon {\kern 1pt} *) = (0,0)\), так как \({\text{Im}}F_{u}^{'}(u{\kern 1pt} *,\varepsilon {\kern 1pt} *) \ne Z = \mathcal{C}([0,\pi ] \times [0,T])\). Это следует из теории Штурма–Лиувилла. Для осуществления наших целей мы применяем аппарат теории p-регулярности [6, 7, 15, 16] и показываем, что отображение \(F(u,\varepsilon )\) является 3-регулярным в точке \((u{\kern 1pt} *,\varepsilon {\kern 1pt} *) = (0,0)\), т.е. p = 3.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation