В настоящей работе предлагается модификация разрывного метода Галеркина, с использованием базисных функций, зависящих от времени. Использование таких базисных функций, позволяет естественным образом устойчиво рассчитывать сильные разрывы.
Приведены результаты расчета газодинамических ударных волн, возникающих при решении задачи Коши с гладкими периодическими начальными данными, по трем вариантам DG (Discontinuous Galerkin) метода, в котором решение ищется в виде кусочно-линейной разрывной функции. Показано, что DG методы, для монотонизации которых используется ограничитель Кокбурна, имеют приблизительно одинаковую точность в областях влияния ударных волн, в то время как немонотонный DG метод, в котором этот ограничитель не применяется, имеет в этих областях существенно более высокую точность, что позволяет использовать его в качестве базисного метода при построении комбинированной схемы, которая монотонно локализует фронты ударных волн и сохраняет повышенную точность в областях их влияния.
В настоящей работе предлагается модификация разрывного метода Галеркина, с использованием базисных функций, зависящих от времени. Использование таких базисных функций, позволяет естественным образом устойчиво рассчитывать сильные разрывы.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation