В работе доказана теорема существования и единственности сильного решения для неоднородной несжимаемоймоделидвиженияжидкостиКельвина–Фойгта.Приэтомнепредполагается,чтоначальное условие на плотность жидкости отделено от нуля. Для доказательства существования решения рассматривается аппроксимационная задача, устанавливается ее разрешимость и сильные априорные оценки ее решений, не зависящие от параметра аппроксимации. После чего осуществляется предельный переход при стремлении параметра аппроксимации к нулю и показывается, что решения аппроксимационной задачи сходятся к сильному решению исходной задачи при стремлении параметра аппроксимации к нулю. Единственность решения устанавливается при помощи неравенства Гронуолла–Беллмана.
В работе исследуется разрешимость начально-краевой задачи для модели движения жидкости Кельвина–Фойгта с переменной плотностью. Сначала при помощи преобразования Лапласа из реологического соотношения для модели движения жидкости Кельвина–Фойгта и уравнения движения жидкости в форме Коши выводится системa уравнений, описывающая движение модели Кельвина–Фойгта с переменной плотностью. Для полученной системы уравнений ставится начально-краевая задача, дается определение ее слабого решения и доказывается его существование. Доказательство проводится на основе аппроксимационно-топологического подхода к исследованию задач гидродинамики. А именно, рассматривается задача, аппроксимирующая исходную, и на основе одного варианта теоремы Лере-Шаудера доказывается ее разрешимость. После чего на основе априорных оценок доказывается, что из последовательности решений аппроксимационной задачи можно извлечь подпоследовательность, слабо сходящуюся к решению исходной задачи.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации