В работе доказана теорема существования и единственности сильного решения для неоднородной несжимаемоймоделидвиженияжидкостиКельвина–Фойгта.Приэтомнепредполагается,чтоначальное условие на плотность жидкости отделено от нуля. Для доказательства существования решения рассматривается аппроксимационная задача, устанавливается ее разрешимость и сильные априорные оценки ее решений, не зависящие от параметра аппроксимации. После чего осуществляется предельный переход при стремлении параметра аппроксимации к нулю и показывается, что решения аппроксимационной задачи сходятся к сильному решению исходной задачи при стремлении параметра аппроксимации к нулю. Единственность решения устанавливается при помощи неравенства Гронуолла–Беллмана.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации