Предлагается новый метод быстрого поиска закономерностей в числовых данных большой размерности, названный “туннельной кластеризацией”. Основными преимуществами нового метода являются: относительно невысокая вычислительная сложность; эндогенное определение состава и количества кластеров; высокая степень интерпретируемости конечных результатов. Приведено описание трех различных вариаций: с фиксированными гиперпараметрами, адаптивными, а также комбинированный подход. Рассмотрены три основных свойства туннельной кластеризации. Практическое применение приведено как на синтетических (100.000 объектов), так и на классических тестовых данных.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation