Для эффективного численно-аналитического исследования суперэкспоненциального роста среднего потока частиц с размножением в случайной среде вводится новая корреляционно-сеточная аппроксимация однородного случайного поля плотности. Сложность реализации траектории частицы при этом не зависит от корреляционного масштаба. Тестовые расчеты для критического шара с изотропным рассеянием показали высокую точность соответствующих оценок среднего потока. Для сеточной аппроксимации случайного поля плотности обоснована возможность гауссовской асимптотики средней скорости размножения частиц при уменьшении корреляционного масштаба.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation