В работе рассматривается задача идентификации включения, содержащегося в некоторой физическиой области, по данным измерений на границе этой области. В частности, к этому классу задач относятся задача импедансной электротомографии и ряд других обратных задач. Задача идентификации формулируется как задача минимизации целевого функционала, который характеризует отклонение данной конфигурации от возможного решения задачи. Наилучшим выбором такого функционала является энергетический функционал Кона-Вогелиуса. В работе рассматривается стандартная регуляризация этого функционала, полученная добавлением к нему линейной комбинации периметра включения и функционала Уиллмора, контролирующего кривизну границы включения. В двумерном случае доказывается нелокальная теорема существования сильных решений для динамической системы порожденной градиентным потоком регуляризованного функционала Кона-Вогелиуса.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation